-
Previous Article
Oscillation and nonoscillation in nonlinear impulsive systems with increasing energy
- PROC Home
- This Issue
-
Next Article
Modeling and analysis of a three-layer damped sandwich beam
Population dynamics in a model for territory acquisition
1. | Department of Mathematics and Statistics, UNC Wilmington, Wilmington, NC 28403 |
2. | Department of Mathematics and Statistics, University of North Carolina in Wilmington, Wilmington, NC 28403, United States, United States |
[1] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks and Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[2] |
Jim M. Cushing. The evolutionary dynamics of a population model with a strong Allee effect. Mathematical Biosciences & Engineering, 2015, 12 (4) : 643-660. doi: 10.3934/mbe.2015.12.643 |
[3] |
Hui Wan, Huaiping Zhu. A new model with delay for mosquito population dynamics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1395-1410. doi: 10.3934/mbe.2014.11.1395 |
[4] |
Henri Berestycki, Jean-Michel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 1-13. doi: 10.3934/dcdss.2011.4.1 |
[5] |
Chris Cosner, Andrew L. Nevai. Spatial population dynamics in a producer-scrounger model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1591-1607. doi: 10.3934/dcdsb.2015.20.1591 |
[6] |
Dianmo Li, Zhen Zhang, Zufei Ma, Baoyu Xie, Rui Wang. Allee effect and a catastrophe model of population dynamics. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 629-634. doi: 10.3934/dcdsb.2004.4.629 |
[7] |
G. Buffoni, S. Pasquali, G. Gilioli. A stochastic model for the dynamics of a stage structured population. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 517-525. doi: 10.3934/dcdsb.2004.4.517 |
[8] |
Mingxin Wang, Peter Y. H. Pang. Qualitative analysis of a diffusive variable-territory prey-predator model. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 1061-1072. doi: 10.3934/dcds.2009.23.1061 |
[9] |
Shangzhi Li, Shangjiang Guo. Dynamics of a stage-structured population model with a state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3523-3551. doi: 10.3934/dcdsb.2020071 |
[10] |
Peixuan Weng, Xiao-Qiang Zhao. Spatial dynamics of a nonlocal and delayed population model in a periodic habitat. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 343-366. doi: 10.3934/dcds.2011.29.343 |
[11] |
Suqi Ma, Qishao Lu, Shuli Mei. Dynamics of a logistic population model with maturation delay and nonlinear birth rate. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 735-752. doi: 10.3934/dcdsb.2005.5.735 |
[12] |
Cristina Anton, Alan Yong. Stochastic dynamics and survival analysis of a cell population model with random perturbations. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1077-1098. doi: 10.3934/mbe.2018048 |
[13] |
Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735 |
[14] |
Dongmei Xiao. Dynamics and bifurcations on a class of population model with seasonal constant-yield harvesting. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 699-719. doi: 10.3934/dcdsb.2016.21.699 |
[15] |
Chang Gong, Jennifer J. Linderman, Denise Kirschner. A population model capturing dynamics of tuberculosis granulomas predicts host infection outcomes. Mathematical Biosciences & Engineering, 2015, 12 (3) : 625-642. doi: 10.3934/mbe.2015.12.625 |
[16] |
Tomas Alarcon, Philipp Getto, Anna Marciniak-Czochra, Maria dM Vivanco. A model for stem cell population dynamics with regulated maturation delay. Conference Publications, 2011, 2011 (Special) : 32-43. doi: 10.3934/proc.2011.2011.32 |
[17] |
Paula Federico, Dobromir T. Dimitrov, Gary F. McCracken. Bat population dynamics: multilevel model based on individuals' energetics. Mathematical Biosciences & Engineering, 2008, 5 (4) : 743-756. doi: 10.3934/mbe.2008.5.743 |
[18] |
Andrea Caravaggio, Luca Gori, Mauro Sodini. Population dynamics and economic development. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : 5827-5848. doi: 10.3934/dcdsb.2021178 |
[19] |
Donald L. DeAngelis, Bo Zhang. Effects of dispersal in a non-uniform environment on population dynamics and competition: A patch model approach. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3087-3104. doi: 10.3934/dcdsb.2014.19.3087 |
[20] |
Qun Liu, Daqing Jiang. Dynamics of a multigroup SIRS epidemic model with random perturbations and varying total population size. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1089-1110. doi: 10.3934/cpaa.2020050 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]