2001, 2001(Special): 327-336. doi: 10.3934/proc.2001.2001.327

Random representations of viscous fluids and the passive magnetic fields transported on them

1. 

Department of Applied Mechanics-FIUBA, Univ. of Buenos Aires and Conicet, Paseo Colon 850, Buenos Aires, Argentina

Published  November 2013

Please refer to Full Text.
Citation: Diego Rapoport. Random representations of viscous fluids and the passive magnetic fields transported on them. Conference Publications, 2001, 2001 (Special) : 327-336. doi: 10.3934/proc.2001.2001.327
[1]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[2]

Marcelo M. Disconzi. On the existence of solutions and causality for relativistic viscous conformal fluids. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1567-1599. doi: 10.3934/cpaa.2019075

[3]

Eduard Feireisl. Mathematical theory of viscous fluids: Retrospective and future perspectives. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 533-555. doi: 10.3934/dcds.2010.27.533

[4]

Eduard Feireisl, Antonín Novotný. Two phase flows of compressible viscous fluids. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2215-2232. doi: 10.3934/dcdss.2022091

[5]

Constantin N. Beli. Representations of integral quadratic forms over dyadic local fields. Electronic Research Announcements, 2006, 12: 100-112.

[6]

Carlos J. García-Cervera, Sookyung Joo. Reorientation of smectic a liquid crystals by magnetic fields. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1983-2000. doi: 10.3934/dcdsb.2015.20.1983

[7]

Serge Nicaise, Simon Stingelin, Fredi Tröltzsch. Optimal control of magnetic fields in flow measurement. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 579-605. doi: 10.3934/dcdss.2015.8.579

[8]

Rainer Buckdahn, Ingo Bulla, Jin Ma. Pathwise Taylor expansions for Itô random fields. Mathematical Control and Related Fields, 2011, 1 (4) : 437-468. doi: 10.3934/mcrf.2011.1.437

[9]

Youcef Amirat, Kamel Hamdache. Strong solutions to the equations of flow and heat transfer in magnetic fluids with internal rotations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3289-3320. doi: 10.3934/dcds.2013.33.3289

[10]

Allen Montz, Hamid Bellout, Frederick Bloom. Existence and uniqueness of steady flows of nonlinear bipolar viscous fluids in a cylinder. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2107-2128. doi: 10.3934/dcdsb.2015.20.2107

[11]

Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden, Adele Manes. Energy stability for thermo-viscous fluids with a fading memory heat flux. Evolution Equations and Control Theory, 2015, 4 (3) : 265-279. doi: 10.3934/eect.2015.4.265

[12]

Pitágoras Pinheiro de Carvalho, Juan Límaco, Denilson Menezes, Yuri Thamsten. Local null controllability of a class of non-Newtonian incompressible viscous fluids. Evolution Equations and Control Theory, 2022, 11 (4) : 1251-1283. doi: 10.3934/eect.2021043

[13]

Shengtian Yang, Thomas Honold. Good random matrices over finite fields. Advances in Mathematics of Communications, 2012, 6 (2) : 203-227. doi: 10.3934/amc.2012.6.203

[14]

Naoufel Ben Abdallah, Raymond El Hajj. Diffusion and guiding center approximation for particle transport in strong magnetic fields. Kinetic and Related Models, 2008, 1 (3) : 331-354. doi: 10.3934/krm.2008.1.331

[15]

Mihai Bostan. On the Boltzmann equation for charged particle beams under the effect of strong magnetic fields. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 339-371. doi: 10.3934/dcdsb.2015.20.339

[16]

Xueke Pu. Quasineutral limit of the Euler-Poisson system under strong magnetic fields. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2095-2111. doi: 10.3934/dcdss.2016086

[17]

Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems and Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317

[18]

Vincenzo Ambrosio. Multiple concentrating solutions for a fractional Kirchhoff equation with magnetic fields. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 781-815. doi: 10.3934/dcds.2020062

[19]

Yue Cao. Blow-up criterion for the 3D viscous polytropic fluids with degenerate viscosities. Electronic Research Archive, 2020, 28 (1) : 27-46. doi: 10.3934/era.2020003

[20]

Juliana Honda Lopes, Gabriela Planas. Well-posedness for a non-isothermal flow of two viscous incompressible fluids. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2455-2477. doi: 10.3934/cpaa.2018117

 Impact Factor: 

Metrics

  • PDF downloads (92)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]