2001, 2001(Special): 366-370. doi: 10.3934/proc.2001.2001.366

Attractors and kernels: Linking nonlinear PDE semigroups to harmonic analysis state-space decomposition

1. 

Department of Math. Sciences, University of South Carolina, Aiken, SC 29801, United States

Published  November 2013

Please refer to Full Text.
Citation: John R. Tucker. Attractors and kernels: Linking nonlinear PDE semigroups to harmonic analysis state-space decomposition. Conference Publications, 2001, 2001 (Special) : 366-370. doi: 10.3934/proc.2001.2001.366
[1]

Xiang Li, Zhixiang Li. Kernel sections and (almost) periodic solutions of a non-autonomous parabolic PDE with a discrete state-dependent delay. Communications on Pure & Applied Analysis, 2011, 10 (2) : 687-700. doi: 10.3934/cpaa.2011.10.687

[2]

Ahmed Y. Abdallah. Attractors for first order lattice systems with almost periodic nonlinear part. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1241-1255. doi: 10.3934/dcdsb.2019218

[3]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[4]

Yuncheng You. Random attractor for stochastic reversible Schnackenberg equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1347-1362. doi: 10.3934/dcdss.2014.7.1347

[5]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[6]

Jana Kopfová. Nonlinear semigroup methods in problems with hysteresis. Conference Publications, 2007, 2007 (Special) : 580-589. doi: 10.3934/proc.2007.2007.580

[7]

Shengqing Hu. Persistence of invariant tori for almost periodically forced reversible systems. Discrete & Continuous Dynamical Systems, 2020, 40 (7) : 4497-4518. doi: 10.3934/dcds.2020188

[8]

Tomás Caraballo, David Cheban. Almost periodic and asymptotically almost periodic solutions of Liénard equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 703-717. doi: 10.3934/dcdsb.2011.16.703

[9]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[10]

Fritz Colonius, Paulo Régis C. Ruffino. Nonlinear Iwasawa decomposition of control flows. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 339-354. doi: 10.3934/dcds.2007.18.339

[11]

Peter Giesl, Martin Rasmussen. A note on almost periodic variational equations. Communications on Pure & Applied Analysis, 2011, 10 (3) : 983-994. doi: 10.3934/cpaa.2011.10.983

[12]

Marko Kostić. Almost periodic type functions and densities. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021008

[13]

Tomás Caraballo, David Cheban. Almost periodic and almost automorphic solutions of linear differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 1857-1882. doi: 10.3934/dcds.2013.33.1857

[14]

Nobuyuki Kenmochi, Noriaki Yamazaki. Global attractor of the multivalued semigroup associated with a phase-field model of grain boundary motion with constraint. Conference Publications, 2011, 2011 (Special) : 824-833. doi: 10.3934/proc.2011.2011.824

[15]

Francesca Alessio, Piero Montecchiari, Andrea Sfecci. Saddle solutions for a class of systems of periodic and reversible semilinear elliptic equations. Networks & Heterogeneous Media, 2019, 14 (3) : 567-587. doi: 10.3934/nhm.2019022

[16]

Doria Affane, Meriem Aissous, Mustapha Fateh Yarou. Almost mixed semi-continuous perturbation of Moreau's sweeping process. Evolution Equations & Control Theory, 2020, 9 (1) : 27-38. doi: 10.3934/eect.2020015

[17]

Jia Li, Junxiang Xu. On the reducibility of a class of almost periodic Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3905-3919. doi: 10.3934/dcdsb.2020268

[18]

Bin-Guo Wang, Wan-Tong Li, Lizhong Qiang. An almost periodic epidemic model in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 271-289. doi: 10.3934/dcdsb.2016.21.271

[19]

Wacław Marzantowicz, Justyna Signerska. Firing map of an almost periodic input function. Conference Publications, 2011, 2011 (Special) : 1032-1041. doi: 10.3934/proc.2011.2011.1032

[20]

Sorin Micu, Ademir F. Pazoto. Almost periodic solutions for a weakly dissipated hybrid system. Mathematical Control & Related Fields, 2014, 4 (1) : 101-113. doi: 10.3934/mcrf.2014.4.101

 Impact Factor: 

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]