2001, 2001(Special): 80-87. doi: 10.3934/proc.2001.2001.80

Asymptotic uniqueness and exact symmetry of k-bump solutions for a class of degenerate elliptic problems

1. 

Department of Mathematics and Statistics, Utah State University, Logan, UT, 84322, United States

2. 

Department of Mathematics and Statistics, Utah State University, Logan, UT 84322

Published  November 2013

Please refer to Full Text.
Citation: Florin Catrina, Zhi-Qiang Wang. Asymptotic uniqueness and exact symmetry of k-bump solutions for a class of degenerate elliptic problems. Conference Publications, 2001, 2001 (Special) : 80-87. doi: 10.3934/proc.2001.2001.80
[1]

Shiren Zhu, Xiaoli Chen, Jianfu Yang. Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2685-2696. doi: 10.3934/cpaa.2013.12.2685

[2]

Phuong Le, Hoang-Hung Vo. Monotonicity and symmetry of positive solutions to degenerate quasilinear elliptic systems in half-spaces and strips. Communications on Pure and Applied Analysis, 2022, 21 (3) : 1027-1048. doi: 10.3934/cpaa.2022008

[3]

Claudianor O. Alves, Olímpio H. Miyagaki, Sérgio H. M. Soares. Multi-bump solutions for a class of quasilinear equations on $R$. Communications on Pure and Applied Analysis, 2012, 11 (2) : 829-844. doi: 10.3934/cpaa.2012.11.829

[4]

Piero Montecchiari, Paul H. Rabinowitz. A nondegeneracy condition for a semilinear elliptic system and the existence of 1- bump solutions. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6995-7012. doi: 10.3934/dcds.2019241

[5]

M. Chuaqui, C. Cortázar, M. Elgueta, J. García-Melián. Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights. Communications on Pure and Applied Analysis, 2004, 3 (4) : 653-662. doi: 10.3934/cpaa.2004.3.653

[6]

Shinji Adachi, Masataka Shibata, Tatsuya Watanabe. Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities. Communications on Pure and Applied Analysis, 2014, 13 (1) : 97-118. doi: 10.3934/cpaa.2014.13.97

[7]

Agnese Di Castro, Mayte Pérez-Llanos, José Miguel Urbano. Limits of anisotropic and degenerate elliptic problems. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1217-1229. doi: 10.3934/cpaa.2012.11.1217

[8]

Rong Xiao, Yuying Zhou. Multiple solutions for a class of semilinear elliptic variational inclusion problems. Journal of Industrial and Management Optimization, 2011, 7 (4) : 991-1002. doi: 10.3934/jimo.2011.7.991

[9]

Riccardo Molle, Donato Passaseo. On the behaviour of the solutions for a class of nonlinear elliptic problems in exterior domains. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 445-454. doi: 10.3934/dcds.1998.4.445

[10]

Cristina Tarsi. Perturbation from symmetry and multiplicity of solutions for elliptic problems with subcritical exponential growth in $\mathbb{R} ^2$. Communications on Pure and Applied Analysis, 2008, 7 (2) : 445-456. doi: 10.3934/cpaa.2008.7.445

[11]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, 2021, 29 (3) : 2359-2373. doi: 10.3934/era.2020119

[12]

Alexander Quaas, Aliang Xia. Existence and uniqueness of positive solutions for a class of logistic type elliptic equations in $\mathbb{R}^N$ involving fractional Laplacian. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2653-2668. doi: 10.3934/dcds.2017113

[13]

Andrea L. Bertozzi, Dejan Slepcev. Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1617-1637. doi: 10.3934/cpaa.2010.9.1617

[14]

Julián López-Gómez, Marcela Molina-Meyer, Paul H. Rabinowitz. Global bifurcation diagrams of one node solutions in a class of degenerate boundary value problems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 923-946. doi: 10.3934/dcdsb.2017047

[15]

Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581

[16]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[17]

Hwai-Chiuan Wang. Stability and symmetry breaking of solutions of semilinear elliptic equations. Conference Publications, 2005, 2005 (Special) : 886-894. doi: 10.3934/proc.2005.2005.886

[18]

Pierpaolo Soravia. Uniqueness results for fully nonlinear degenerate elliptic equations with discontinuous coefficients. Communications on Pure and Applied Analysis, 2006, 5 (1) : 213-240. doi: 10.3934/cpaa.2006.5.213

[19]

V. Lakshmikantham, S. Leela. Generalized quasilinearization and semilinear degenerate elliptic problems. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 801-808. doi: 10.3934/dcds.2001.7.801

[20]

Maria Francesca Betta, Olivier Guibé, Anna Mercaldo. Uniqueness for Neumann problems for nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1023-1048. doi: 10.3934/cpaa.2019050

 Impact Factor: 

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]