$u_t - \Delta u = u^(m_1)v^(n_1)$ ,
$v_t - \Delta v = u^(m_2)v^(n_2)$ ,
which blow up at $t = T$. We obtain the following estimates on the blow-up rates:
$c(T - t)^(-(n_1-n_2+1)/\gamma) <= max_(x\in\Omega) u(x, t) <= C(T - t)^(-(n_1-n_2+1)/\gamma)$,
$c(T - t)^(-(m_2-m_1+1)/\gamma) <= max_(x\in\Omega) v(x, t) <= C(T - t)^(-(m_2-m_1+1)/\gamma)$,
for some positive constants $c,C$ and $\gamma = m_2n_1 - (1 - m_1)(1 - n_2)$.
Citation: |