2003, 2003(Special): 256-262. doi: 10.3934/proc.2003.2003.256

Making the numerical abscissa negative for a class of neutral equations

1. 

Department of Mathematical Sciences, University of North Carolina at Greensboro, 340 Bryan Building, Greensboro, NC 27410, United States

2. 

Programs in Mathematical Sciences, University of Texas at Dallas, Richardson, TX 75083-0688, United States

Received  September 2002 Revised  March 2003 Published  April 2003

We consider the question of exponential stability of the solution semi- group for a class of scalar differential-difference equations of neutral type. Under very weak assumptions on the coefficients in the equation we show how to construct an appropriate inner product on the underlying state space, which guarantees that the numerical abscissa of the infinitesimal generator is negative.
Citation: R.H. Fabiano, J. Turi. Making the numerical abscissa negative for a class of neutral equations. Conference Publications, 2003, 2003 (Special) : 256-262. doi: 10.3934/proc.2003.2003.256
[1]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete & Continuous Dynamical Systems, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[2]

Alessia Andò, Dimitri Breda, Francesca Scarabel. Numerical continuation and delay equations: A novel approach for complex models of structured populations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2619-2640. doi: 10.3934/dcdss.2020165

[3]

Tomás Caraballo, P.E. Kloeden, Pedro Marín-Rubio. Numerical and finite delay approximations of attractors for logistic differential-integral equations with infinite delay. Discrete & Continuous Dynamical Systems, 2007, 19 (1) : 177-196. doi: 10.3934/dcds.2007.19.177

[4]

Bernold Fiedler, Isabelle Schneider. Stabilized rapid oscillations in a delay equation: Feedback control by a small resonant delay. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1145-1185. doi: 10.3934/dcdss.2020068

[5]

Franck Boyer, Víctor Hernández-Santamaría, Luz De Teresa. Insensitizing controls for a semilinear parabolic equation: A numerical approach. Mathematical Control & Related Fields, 2019, 9 (1) : 117-158. doi: 10.3934/mcrf.2019007

[6]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[7]

Elena Braverman, Karel Hasik, Anatoli F. Ivanov, Sergei I. Trofimchuk. A cyclic system with delay and its characteristic equation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (1) : 1-29. doi: 10.3934/dcdss.2020001

[8]

Kazuki Himoto, Hideaki Matsunaga. The limits of solutions of a linear delay integral equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3033-3048. doi: 10.3934/dcdsb.2020050

[9]

P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220

[10]

Nick Bessonov, Gennady Bocharov, Tarik Mohammed Touaoula, Sergei Trofimchuk, Vitaly Volpert. Delay reaction-diffusion equation for infection dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2073-2091. doi: 10.3934/dcdsb.2019085

[11]

Richard H. Rand, Asok K. Sen. A numerical investigation of the dynamics of a system of two time-delay coupled relaxation oscillators. Communications on Pure & Applied Analysis, 2003, 2 (4) : 567-577. doi: 10.3934/cpaa.2003.2.567

[12]

Nasser H. Sweilam, Taghreed A. Assiri, Muner M. Abou Hasan. Optimal control problem of variable-order delay system of advertising procedure: Numerical treatment. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021085

[13]

Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic & Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019

[14]

Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826

[15]

Djemaa Messaoudi, Osama Said Ahmed, Komivi Souley Agbodjan, Ting Cheng, Daijun Jiang. Numerical recovery of magnetic diffusivity in a three dimensional spherical dynamo equation. Inverse Problems & Imaging, 2020, 14 (5) : 797-818. doi: 10.3934/ipi.2020037

[16]

Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129

[17]

Rodrigue Gnitchogna Batogna, Abdon Atangana. Generalised class of Time Fractional Black Scholes equation and numerical analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 435-445. doi: 10.3934/dcdss.2019028

[18]

Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139

[19]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[20]

Walid K. Abou Salem, Xiao Liu, Catherine Sulem. Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2011, 29 (4) : 1637-1649. doi: 10.3934/dcds.2011.29.1637

 Impact Factor: 

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]