This issuePrevious ArticleFractal dimension of attractors for a Stefan problemNext ArticleSystems with coupling in $mathbb(R)^N$ class of noncoercive potentials
Semiclassical and large quantum number limits of the Schrödinger equation
For bound one-dimensional systems, the semiclassical limit h $\to 0$ of the Schrödinger equation generally corresponds to the limit of infinite quantum numbers, and conventional WKB quantization becomes increasingly accurate in this limit. A potential well with a sufficiently strong attractive inverse-square tail supports an infinite dipole series of bound states, but the limit of infinite quantum numbers is not the semiclassical limit in this case. Semiclassical eigenvalues derived via conventional WKB quantization tend to a constant relative error in the large-quantum-number limit when the Langer modification is used. Without the Langer modification the relative error grows exponentially in the limit of large quantum numbers.