2003, 2003(Special): 30-41. doi: 10.3934/proc.2003.2003.30

Constrained envelope for a general class of design problems

1. 

E.T.S. Ingenieros Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain

2. 

E.T.S. Ingenieros Industriales, Universidad de Castilla La Mancha

Received  July 2002 Published  April 2003

We analyze the relaxation and computation of the relaxed density when we reformulate a typical optimal design problem with volume constraint in two dimension as a fully vector variational problem. Our aim is to examine a general cost functional depending explicitly on all variables and in particular in the gradient variable, and see how far computations and properties of the relaxed integrand can be pushed.
Citation: Ernesto Aranda, Pablo Pedregal. Constrained envelope for a general class of design problems. Conference Publications, 2003, 2003 (Special) : 30-41. doi: 10.3934/proc.2003.2003.30
[1]

Pablo Pedregal. Fully explicit quasiconvexification of the mean-square deviation of the gradient of the state in optimal design. Electronic Research Announcements, 2001, 7: 72-78.

[2]

Bin Li, Kok Lay Teo, Cheng-Chew Lim, Guang Ren Duan. An optimal PID controller design for nonlinear constrained optimal control problems. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1101-1117. doi: 10.3934/dcdsb.2011.16.1101

[3]

Ciro D'Apice, Peter I. Kogut, Rosanna Manzo. On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks and Heterogeneous Media, 2014, 9 (3) : 501-518. doi: 10.3934/nhm.2014.9.501

[4]

José C. Bellido, Pablo Pedregal. Explicit quasiconvexification for some cost functionals depending on derivatives of the state in optimal designing. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 967-982. doi: 10.3934/dcds.2002.8.967

[5]

Helene Frankowska, Elsa M. Marchini, Marco Mazzola. A relaxation result for state constrained inclusions in infinite dimension. Mathematical Control and Related Fields, 2016, 6 (1) : 113-141. doi: 10.3934/mcrf.2016.6.113

[6]

Yong Xia, Yu-Jun Gong, Sheng-Nan Han. A new semidefinite relaxation for $L_{1}$-constrained quadratic optimization and extensions. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 185-195. doi: 10.3934/naco.2015.5.185

[7]

Amir Adibzadeh, Mohsen Zamani, Amir A. Suratgar, Mohammad B. Menhaj. Constrained optimal consensus in dynamical networks. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 349-360. doi: 10.3934/naco.2019023

[8]

H. T. Banks, R. A. Everett, Neha Murad, R. D. White, J. E. Banks, Bodil N. Cass, Jay A. Rosenheim. Optimal design for dynamical modeling of pest populations. Mathematical Biosciences & Engineering, 2018, 15 (4) : 993-1010. doi: 10.3934/mbe.2018044

[9]

K.F.C. Yiu, K.L. Mak, K. L. Teo. Airfoil design via optimal control theory. Journal of Industrial and Management Optimization, 2005, 1 (1) : 133-148. doi: 10.3934/jimo.2005.1.133

[10]

Boris P. Belinskiy. Optimal design of an optical length of a rod with the given mass. Conference Publications, 2007, 2007 (Special) : 85-91. doi: 10.3934/proc.2007.2007.85

[11]

Xueling Zhou, Bingo Wing-Kuen Ling, Hai Huyen Dam, Kok-Lay Teo. Optimal design of window functions for filter window bank. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1119-1145. doi: 10.3934/jimo.2020014

[12]

Yannick Privat, Emmanuel Trélat. Optimal design of sensors for a damped wave equation. Conference Publications, 2015, 2015 (special) : 936-944. doi: 10.3934/proc.2015.0936

[13]

Wei Xu, Liying Yu, Gui-Hua Lin, Zhi Guo Feng. Optimal switching signal design with a cost on switching action. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2531-2549. doi: 10.3934/jimo.2019068

[14]

Leszek Gasiński, Nikolaos S. Papageorgiou. Relaxation of optimal control problems driven by nonlinear evolution equations. Evolution Equations and Control Theory, 2020, 9 (4) : 1027-1040. doi: 10.3934/eect.2020050

[15]

Qiang Du, Jingyan Zhang. Asymptotic analysis of a diffuse interface relaxation to a nonlocal optimal partition problem. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1443-1461. doi: 10.3934/dcds.2011.29.1443

[16]

Kazimierz Malanowski, Helmut Maurer. Sensitivity analysis for state constrained optimal control problems. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 241-272. doi: 10.3934/dcds.1998.4.241

[17]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[18]

Amin Reza Kalantari Khalil Abad, Farnaz Barzinpour, Seyed Hamid Reza Pasandideh. A novel separate chance-constrained programming model to design a sustainable medical ventilator supply chain network during the Covid-19 pandemic. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2021234

[19]

Lili Chang, Wei Gong, Guiquan Sun, Ningning Yan. PDE-constrained optimal control approach for the approximation of an inverse Cauchy problem. Inverse Problems and Imaging, 2015, 9 (3) : 791-814. doi: 10.3934/ipi.2015.9.791

[20]

Benedetto Piccoli. Optimal syntheses for state constrained problems with application to optimization of cancer therapies. Mathematical Control and Related Fields, 2012, 2 (4) : 383-398. doi: 10.3934/mcrf.2012.2.383

 Impact Factor: 

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]