-
Previous Article
On the damped semilinear wave equation with critical exponent
- PROC Home
- This Issue
-
Next Article
Remarks on quasilinear elliptic equations as models for elementary particles
Oscillatory properties of third order neutral delay differential equations
1. | Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, United States |
2. | Department of Mathematics, Periyar University, Salem - 636 011 Tamil Nadu, India, India |
$a(t) b(t) (y(t) + py(t - \tau))'^'^' + q(t)f(y(t - \sigma)) = 0$
where $a(t) > 0, b(t) > 0, q(t) >= 0, 0 <= p < 1, \tau > 0$, and $\sigma > 0$. Criteria for the oscillation of all solutions of (*) are obtained. Examples illustrating the results are included.
[1] |
Saroj Panigrahi, Rakhee Basu. Oscillation results for second order nonlinear neutral differential equations with delay. Conference Publications, 2015, 2015 (special) : 906-912. doi: 10.3934/proc.2015.0906 |
[2] |
R.S. Dahiya, A. Zafer. Oscillation theorems of higher order neutral type differential equations. Conference Publications, 1998, 1998 (Special) : 203-219. doi: 10.3934/proc.1998.1998.203 |
[3] |
T. Candan, R.S. Dahiya. Oscillation of mixed neutral differential equations with forcing term. Conference Publications, 2003, 2003 (Special) : 167-172. doi: 10.3934/proc.2003.2003.167 |
[4] |
Osama Moaaz, Omar Bazighifan. Oscillation criteria for second-order quasi-linear neutral functional differential equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2465-2473. doi: 10.3934/dcdss.2020136 |
[5] |
Baruch Cahlon. Sufficient conditions for oscillations of higher order neutral delay differential equations. Conference Publications, 1998, 1998 (Special) : 124-137. doi: 10.3934/proc.1998.1998.124 |
[6] |
Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057 |
[7] |
Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577 |
[8] |
Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear third-order ordinary differential equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 655-666. doi: 10.3934/dcdss.2018040 |
[9] |
RazIye Mert, A. Zafer. A necessary and sufficient condition for oscillation of second order sublinear delay dynamic equations. Conference Publications, 2011, 2011 (Special) : 1061-1067. doi: 10.3934/proc.2011.2011.1061 |
[10] |
Yuri V. Rogovchenko, Fatoş Tuncay. Interval oscillation of a second order nonlinear differential equation with a damping term. Conference Publications, 2007, 2007 (Special) : 883-891. doi: 10.3934/proc.2007.2007.883 |
[11] |
Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295 |
[12] |
Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031 |
[13] |
Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105 |
[14] |
Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678 |
[15] |
Júlio Cesar Santos Sampaio, Igor Leite Freire. Symmetries and solutions of a third order equation. Conference Publications, 2015, 2015 (special) : 981-989. doi: 10.3934/proc.2015.0981 |
[16] |
Regilene Oliveira, Cláudia Valls. On the Abel differential equations of third kind. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1821-1834. doi: 10.3934/dcdsb.2020004 |
[17] |
Min Zou, An-Ping Liu, Zhimin Zhang. Oscillation theorems for impulsive parabolic differential system of neutral type. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2351-2363. doi: 10.3934/dcdsb.2017103 |
[18] |
M . Bartušek, John R. Graef. Some limit-point/limit-circle results for third order differential equations. Conference Publications, 2001, 2001 (Special) : 31-38. doi: 10.3934/proc.2001.2001.31 |
[19] |
Marissa Condon, Alfredo Deaño, Arieh Iserles. On systems of differential equations with extrinsic oscillation. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1345-1367. doi: 10.3934/dcds.2010.28.1345 |
[20] |
François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]