2003, 2003(Special): 571-579. doi: 10.3934/proc.2003.2003.571

Discrete models and Fisher's maximum principle in ecology

1. 

Department of Technology, University of Kalmar, S-39182 Kalmar, Sweden

Received  September 2002 Revised  March 2003 Published  April 2003

Fisher's (1930) maximum principle in ecology states that \Any net advantage gained by an organism will be conserved in the form of an increase in population, rather than in an increase in the average Malthusian parameter, which is kept by this adjustment always near zero." We know today that we cannot make such general statements. Nevertheless, several ecologists, including Nicholson (1960), have stressed this principle as a general ecological principle. Based on a number of theoretical counterexamples, we cannot conclude that this principle is not supported by any essential biological facts. This paper examines simple examples that illustrate when the principle is valid. We use a discrete modeling approach to account for the fact that several boreal populations are constrained to reproduce at well-defined discrete moments. Several authors have pointed out that the above maximum principle ceases to be valid when predation is present. With reference to the Ricker competition case, we suggest how the principle could be reformulated so as to cover that case.
Citation: Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571
[1]

Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559

[2]

Ziyad AlSharawi, Nikhil Pal, Joydev Chattopadhyay. The role of vigilance on a discrete-time predator-prey model. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022017

[3]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[4]

Rui Xu, M.A.J. Chaplain, F.A. Davidson. Periodic solutions of a discrete nonautonomous Lotka-Volterra predator-prey model with time delays. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 823-831. doi: 10.3934/dcdsb.2004.4.823

[5]

Yanlin Zhang, Qi Cheng, Shengfu Deng. Qualitative structure of a discrete predator-prey model with nonmonotonic functional response. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022065

[6]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[7]

Xinjian Wang, Guo Lin. Asymptotic spreading for a time-periodic predator-prey system. Communications on Pure and Applied Analysis, 2019, 18 (6) : 2983-2999. doi: 10.3934/cpaa.2019133

[8]

Shuxia Pan. Asymptotic spreading in a delayed dispersal predator-prey system without comparison principle. Electronic Research Archive, 2019, 27: 89-99. doi: 10.3934/era.2019011

[9]

Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065

[10]

Christian Kuehn, Thilo Gross. Nonlocal generalized models of predator-prey systems. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 693-720. doi: 10.3934/dcdsb.2013.18.693

[11]

Chiun-Chuan Chen, Ting-Yang Hsiao, Li-Chang Hung. Discrete N-barrier maximum principle for a lattice dynamical system arising in competition models. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 153-187. doi: 10.3934/dcds.2020007

[12]

Meng Fan, Qian Wang. Periodic solutions of a class of nonautonomous discrete time semi-ratio-dependent predator-prey systems. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 563-574. doi: 10.3934/dcdsb.2004.4.563

[13]

Yanfei Du, Ben Niu, Junjie Wei. A predator-prey model with cooperative hunting in the predator and group defense in the prey. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021298

[14]

Jing-An Cui, Xinyu Song. Permanence of predator-prey system with stage structure. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 547-554. doi: 10.3934/dcdsb.2004.4.547

[15]

Dongmei Xiao, Kate Fang Zhang. Multiple bifurcations of a predator-prey system. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 417-433. doi: 10.3934/dcdsb.2007.8.417

[16]

Hongxiao Hu, Liguang Xu, Kai Wang. A comparison of deterministic and stochastic predator-prey models with disease in the predator. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2837-2863. doi: 10.3934/dcdsb.2018289

[17]

Peng Feng. On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences & Engineering, 2014, 11 (4) : 807-821. doi: 10.3934/mbe.2014.11.807

[18]

Julián López-Gómez, Eduardo Muñoz-Hernández. A spatially heterogeneous predator-prey model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2085-2113. doi: 10.3934/dcdsb.2020081

[19]

Yu-Shuo Chen, Jong-Shenq Guo, Masahiko Shimojo. Recent developments on a singular predator-prey model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1811-1825. doi: 10.3934/dcdsb.2020040

[20]

Ronald E. Mickens. Analysis of a new class of predator-prey model. Conference Publications, 2001, 2001 (Special) : 265-269. doi: 10.3934/proc.2001.2001.265

 Impact Factor: 

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]