
Previous Article
On solutions to stochastic differential inclusions
 PROC Home
 This Issue

Next Article
An averaging method for the Helmholtz equation
Dynamics of torquespeed profiles for electric vehicles and nonlinear models based on differentialalgebraic equations
1.  University of Southern Denmark, MCI, Faculty of Science and Engineering, Sonderborg, DK6400, Denmark, Denmark 
2.  SauerDanfoss A/S, Nordborg, Denmark 
[1] 
Yingjie Bi, Siyu Liu, Yong Li. Periodic solutions of differentialalgebraic equations. Discrete & Continuous Dynamical Systems  B, 2020, 25 (4) : 13831395. doi: 10.3934/dcdsb.2019232 
[2] 
Vu Hoang Linh, Volker Mehrmann. Spectral analysis for linear differentialalgebraic equations. Conference Publications, 2011, 2011 (Special) : 9911000. doi: 10.3934/proc.2011.2011.991 
[3] 
Jason R. Scott, Stephen Campbell. Auxiliary signal design for failure detection in differentialalgebraic equations. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 151179. doi: 10.3934/naco.2014.4.151 
[4] 
Sergiy Zhuk. Inverse problems for linear illposed differentialalgebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 14671476. doi: 10.3934/proc.2011.2011.1467 
[5] 
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differentialalgebraic biological economic system with predator harvesting. Electronic Research Archive, , () : . doi: 10.3934/era.2020084 
[6] 
Anna MarciniakCzochra, Andro Mikelić. A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium. Discrete & Continuous Dynamical Systems  S, 2014, 7 (5) : 10651077. doi: 10.3934/dcdss.2014.7.1065 
[7] 
Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete & Continuous Dynamical Systems  B, 2013, 18 (2) : 417435. doi: 10.3934/dcdsb.2013.18.417 
[8] 
Jaume Llibre, Claudia Valls. Algebraic limit cycles for quadratic polynomial differential systems. Discrete & Continuous Dynamical Systems  B, 2018, 23 (6) : 24752485. doi: 10.3934/dcdsb.2018070 
[9] 
Claudio Giorgi. Phasefield models for transition phenomena in materials with hysteresis. Discrete & Continuous Dynamical Systems  S, 2015, 8 (4) : 693722. doi: 10.3934/dcdss.2015.8.693 
[10] 
Alfonso Ruiz Herrera. Paradoxical phenomena and chaotic dynamics in epidemic models subject to vaccination. Communications on Pure & Applied Analysis, 2020, 19 (5) : 25332548. doi: 10.3934/cpaa.2020111 
[11] 
Sergio Albeverio, Sonia Mazzucchi. Infinite dimensional integrals and partial differential equations for stochastic and quantum phenomena. Journal of Geometric Mechanics, 2019, 11 (2) : 123137. doi: 10.3934/jgm.2019006 
[12] 
Aaron W. Brown. Nonexpanding attractors: Conjugacy to algebraic models and classification in 3manifolds. Journal of Modern Dynamics, 2010, 4 (3) : 517548. doi: 10.3934/jmd.2010.4.517 
[13] 
Jędrzej Śniatycki. Integral curves of derivations on locally semialgebraic differential spaces. Conference Publications, 2003, 2003 (Special) : 827833. doi: 10.3934/proc.2003.2003.827 
[14] 
J. M. Cushing. Nonlinear semelparous Leslie models. Mathematical Biosciences & Engineering, 2006, 3 (1) : 1736. doi: 10.3934/mbe.2006.3.17 
[15] 
Xin Liu. Compressible viscous flows in a symmetric domain with complete slip boundary: The nonlinear stability of uniformly rotating states with small angular velocities. Communications on Pure & Applied Analysis, 2019, 18 (2) : 751794. doi: 10.3934/cpaa.2019037 
[16] 
James M. Hyman, Jia Li. Differential susceptibility and infectivity epidemic models. Mathematical Biosciences & Engineering, 2006, 3 (1) : 89100. doi: 10.3934/mbe.2006.3.89 
[17] 
Zhiqing Liu, Zhong Bo Fang. Blowup phenomena for a nonlocal quasilinear parabolic equation with timedependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems  B, 2016, 21 (10) : 36193635. doi: 10.3934/dcdsb.2016113 
[18] 
Michael E. Filippakis, Donal O'Regan, Nikolaos S. Papageorgiou. Positive solutions and bifurcation phenomena for nonlinear elliptic equations of logistic type: The superdiffusive case. Communications on Pure & Applied Analysis, 2010, 9 (6) : 15071527. doi: 10.3934/cpaa.2010.9.1507 
[19] 
Monica Marras, Stella VernierPiro, Giuseppe Viglialoro. Blowup phenomena for nonlinear pseudoparabolic equations with gradient term. Discrete & Continuous Dynamical Systems  B, 2017, 22 (6) : 22912300. doi: 10.3934/dcdsb.2017096 
[20] 
Masatoshi Shiino, Keiji Okumura. Control of attractors in nonlinear dynamical systems using external noise: Effects of noise on synchronization phenomena. Conference Publications, 2013, 2013 (special) : 685694. doi: 10.3934/proc.2013.2013.685 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]