2003, 2003(Special): 68-77. doi: 10.3934/proc.2003.2003.68

A reducible representation of the generalized symmetry group of a quasiperiodic flow


Department of Mathematics, Brigham Young University, Provo, UT 84602

Received  June 2002 Published  April 2003

The generalized symmetry group of a quasiperiodic flow on a $n$-torus is the group theoretic normalizer, within the group of diffeomorphisms of the $n$-torus, of the one parameter abelian group of diffeomorphisms generated by the flow. Up to conjugacy, the generalized symmetry group of a quasiperiodic flow is determined by a system of uncoupled first order partial differential equations. New types of symmetries (other than the classical types of symmetries or time-reversing symmetries) may exist depending on certain algebraic relationships being satisfied by pair wise ratios of the frequencies of the quasiperiodic flow. These new symmetries, when they exist, are a dominant feature of a reducible linear representation of the generalized symmetry group in the de Rham cohomology of the $n$-torus.
Citation: L. Bakker. A reducible representation of the generalized symmetry group of a quasiperiodic flow. Conference Publications, 2003, 2003 (Special) : 68-77. doi: 10.3934/proc.2003.2003.68

Hengrui Luo, Alice Patania, Jisu Kim, Mikael Vejdemo-Johansson. Generalized penalty for circular coordinate representation. Foundations of Data Science, 2021, 3 (4) : 729-767. doi: 10.3934/fods.2021024


Daniele Boffi, Franco Brezzi, Michel Fortin. Reduced symmetry elements in linear elasticity. Communications on Pure and Applied Analysis, 2009, 8 (1) : 95-121. doi: 10.3934/cpaa.2009.8.95


Claudio Meneses. Linear phase space deformations with angular momentum symmetry. Journal of Geometric Mechanics, 2019, 11 (1) : 45-58. doi: 10.3934/jgm.2019003


Dmitry V. Zenkov. Linear conservation laws of nonholonomic systems with symmetry. Conference Publications, 2003, 2003 (Special) : 967-976. doi: 10.3934/proc.2003.2003.967


Rui Qian, Rong Hu, Ya-Ping Fang. Local smooth representation of solution sets in parametric linear fractional programming problems. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 45-52. doi: 10.3934/naco.2019004


Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122


Pedro Freitas. The linear damped wave equation, Hamiltonian symmetry, and the importance of being odd. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 635-640. doi: 10.3934/dcds.1998.4.635


Shuo Han, Ping Lin, Jiongmin Yong. Causal state feedback representation for linear quadratic optimal control problems of singular Volterra integral equations. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022038


Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Linear model of traffic flow in an isolated network. Conference Publications, 2015, 2015 (special) : 670-677. doi: 10.3934/proc.2015.0670


Ana-Maria Acu, Ioan Cristian Buscu, Ioan Rasa. Generalized Kantorovich modifications of positive linear operators. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2021042


Valentin Ovsienko, Richard Schwartz, Serge Tabachnikov. Quasiperiodic motion for the pentagram map. Electronic Research Announcements, 2009, 16: 1-8. doi: 10.3934/era.2009.16.1


Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3851-3863. doi: 10.3934/dcdss.2020445


W. G. Litvinov. Problem on stationary flow of electrorheological fluids at the generalized conditions of slip on the boundary. Communications on Pure and Applied Analysis, 2007, 6 (1) : 247-277. doi: 10.3934/cpaa.2007.6.247


Jonathan Zinsl. The gradient flow of a generalized Fisher information functional with respect to modified Wasserstein distances. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 919-933. doi: 10.3934/dcdss.2017047


Lee DeVille, Nicole Riemer, Matthew West. Convergence of a generalized Weighted Flow Algorithm for stochastic particle coagulation. Journal of Computational Dynamics, 2019, 6 (1) : 69-94. doi: 10.3934/jcd.2019003


Bendong Lou. Traveling wave solutions of a generalized curvature flow equation in the plane. Conference Publications, 2007, 2007 (Special) : 687-693. doi: 10.3934/proc.2007.2007.687


Zhitao Zhang, Haijun Luo. Symmetry and asymptotic behavior of ground state solutions for schrödinger systems with linear interaction. Communications on Pure and Applied Analysis, 2018, 17 (3) : 787-806. doi: 10.3934/cpaa.2018040


Artyom Nahapetyan, Panos M. Pardalos. A bilinear relaxation based algorithm for concave piecewise linear network flow problems. Journal of Industrial and Management Optimization, 2007, 3 (1) : 71-85. doi: 10.3934/jimo.2007.3.71


K.H. Wong, C. Myburgh, L. Omari. A gradient flow approach for computing jump linear quadratic optimal feedback gains. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 803-808. doi: 10.3934/dcds.2000.6.803


Ming Li, Shaobo Gan, Lan Wen. Robustly transitive singular sets via approach of an extended linear Poincaré flow. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 239-269. doi: 10.3934/dcds.2005.13.239

 Impact Factor: 


  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]