2003, 2003(Special): 688-693. doi: 10.3934/proc.2003.2003.688

A semilinear elliptic system with vanishing nonlinearities

1. 

Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada

2. 

Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294, United States

Received  August 2002 Revised  February 2003 Published  April 2003

The Neumann boundary value problem is examined for systems of elliptic equations of the form $\Delta u + g(u) = f(x), x \in \omega.$ It is assumed that $g \in 2 C(\mathbb(R)^N,\mathbb(R)^N)$ is a bounded function which may vanish at infinity. Leray-Schauder degree methods are used.
Citation: Rafael Ortega, James R. Ward Jr. A semilinear elliptic system with vanishing nonlinearities. Conference Publications, 2003, 2003 (Special) : 688-693. doi: 10.3934/proc.2003.2003.688
[1]

Vladimir Lubyshev. Precise range of the existence of positive solutions of a nonlinear, indefinite in sign Neumann problem. Communications on Pure and Applied Analysis, 2009, 8 (3) : 999-1018. doi: 10.3934/cpaa.2009.8.999

[2]

Kin Ming Hui, Sunghoon Kim. Existence of Neumann and singular solutions of the fast diffusion equation. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4859-4887. doi: 10.3934/dcds.2015.35.4859

[3]

Shu-Zhi Song, Shang-Jie Chen, Chun-Lei Tang. Existence of solutions for Kirchhoff type problems with resonance at higher eigenvalues. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6453-6473. doi: 10.3934/dcds.2016078

[4]

Jiafeng Liao, Peng Zhang, Jiu Liu, Chunlei Tang. Existence and multiplicity of positive solutions for a class of Kirchhoff type problems at resonance. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1959-1974. doi: 10.3934/dcdss.2016080

[5]

Wenming Zou. Multiple solutions results for two-point boundary value problem with resonance. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 485-496. doi: 10.3934/dcds.1998.4.485

[6]

Lishan Lin. A priori bounds and existence result of positive solutions for fractional Laplacian systems. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1517-1531. doi: 10.3934/dcds.2019065

[7]

Goro Akagi. Energy solutions of the Cauchy-Neumann problem for porous medium equations. Conference Publications, 2009, 2009 (Special) : 1-10. doi: 10.3934/proc.2009.2009.1

[8]

Haitao Yang, Yibin Zhang. Boundary bubbling solutions for a planar elliptic problem with exponential Neumann data. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5467-5502. doi: 10.3934/dcds.2017238

[9]

Giuseppina D’Aguì, Salvatore A. Marano, Nikolaos S. Papageorgiou. Multiple solutions to a Neumann problem with equi-diffusive reaction term. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 765-777. doi: 10.3934/dcdss.2012.5.765

[10]

Long Wei. Concentrating phenomena in some elliptic Neumann problem: Asymptotic behavior of solutions. Communications on Pure and Applied Analysis, 2008, 7 (4) : 925-946. doi: 10.3934/cpaa.2008.7.925

[11]

Liping Wang. Arbitrarily many solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Communications on Pure and Applied Analysis, 2010, 9 (3) : 761-778. doi: 10.3934/cpaa.2010.9.761

[12]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[13]

Guglielmo Feltrin, Elisa Sovrano, Andrea Tellini. On the number of positive solutions to an indefinite parameter-dependent Neumann problem. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 21-71. doi: 10.3934/dcds.2021107

[14]

Philip Korman. Curves of equiharmonic solutions, and problems at resonance. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2847-2860. doi: 10.3934/dcds.2014.34.2847

[15]

Leszek Gasiński. Existence results for quasilinear hemivariational inequalities at resonance. Conference Publications, 2007, 2007 (Special) : 409-418. doi: 10.3934/proc.2007.2007.409

[16]

D. Motreanu, Donal O'Regan, Nikolaos S. Papageorgiou. A unified treatment using critical point methods of the existence of multiple solutions for superlinear and sublinear Neumann problems. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1791-1816. doi: 10.3934/cpaa.2011.10.1791

[17]

Simon Hubmer, Andreas Neubauer, Ronny Ramlau, Henning U. Voss. On the parameter estimation problem of magnetic resonance advection imaging. Inverse Problems and Imaging, 2018, 12 (1) : 175-204. doi: 10.3934/ipi.2018007

[18]

Jiabao Su, Zhaoli Liu. A bounded resonance problem for semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 431-445. doi: 10.3934/dcds.2007.19.431

[19]

Jun Wang, Lu Xiao. Existence and concentration of solutions for a Kirchhoff type problem with potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7137-7168. doi: 10.3934/dcds.2016111

[20]

Shengbing Deng. Construction solutions for Neumann problem with Hénon term in $ \mathbb{R}^2 $. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2233-2253. doi: 10.3934/dcds.2019094

 Impact Factor: 

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]