
Previous Article
Exponential attractor for the delayed logistic equation with a nonlinear diffusion
 PROC Home
 This Issue

Next Article
Topologicalnumerical approach to the existence of periodic trajectories in ODE's
Analytic continuation into the future
1.  Department of Mathematics, East Carolina University, Greenville, NC 27858, United States, United States 
[1] 
David Lipshutz. Exit time asymptotics for small noise stochastic delay differential equations. Discrete & Continuous Dynamical Systems  A, 2018, 38 (6) : 30993138. doi: 10.3934/dcds.2018135 
[2] 
Antonio CoronelEscamilla, José Francisco GómezAguilar. A novel predictorcorrector scheme for solving variableorder fractional delay differential equations involving operators with MittagLeffler kernel. Discrete & Continuous Dynamical Systems  S, 2020, 13 (3) : 561574. doi: 10.3934/dcdss.2020031 
[3] 
Ali Akgül, Mustafa Inc, Esra Karatas. Reproducing kernel functions for difference equations. Discrete & Continuous Dynamical Systems  S, 2015, 8 (6) : 10551064. doi: 10.3934/dcdss.2015.8.1055 
[4] 
Hua Chen, WeiXi Li, ChaoJiang Xu. Propagation of Gevrey regularity for solutions of Landau equations. Kinetic & Related Models, 2008, 1 (3) : 355368. doi: 10.3934/krm.2008.1.355 
[5] 
MeiQin Zhan. Gevrey class regularity for the solutions of the PhaseLock equations of Superconductivity. Conference Publications, 2001, 2001 (Special) : 406415. doi: 10.3934/proc.2001.2001.406 
[6] 
Bixiang Wang, Shouhong Wang. Gevrey class regularity for the solutions of the GinzburgLandau equations of superconductivity. Discrete & Continuous Dynamical Systems  A, 1998, 4 (3) : 507522. doi: 10.3934/dcds.1998.4.507 
[7] 
Feng Cheng, ChaoJiang Xu. On the Gevrey regularity of solutions to the 3D ideal MHD equations. Discrete & Continuous Dynamical Systems  A, 2019, 39 (11) : 64856506. doi: 10.3934/dcds.2019281 
[8] 
Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasiperiodic gevrey schrödinger equations. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020216 
[9] 
Yvan Martel, Frank Merle. Refined asymptotics around solitons for gKdV equations. Discrete & Continuous Dynamical Systems  A, 2008, 20 (2) : 177218. doi: 10.3934/dcds.2008.20.177 
[10] 
Xiang Li, Zhixiang Li. Kernel sections and (almost) periodic solutions of a nonautonomous parabolic PDE with a discrete statedependent delay. Communications on Pure & Applied Analysis, 2011, 10 (2) : 687700. doi: 10.3934/cpaa.2011.10.687 
[11] 
Shengfan Zhou, Linshan Wang. Kernel sections for damped nonautonomous wave equations with critical exponent. Discrete & Continuous Dynamical Systems  A, 2003, 9 (2) : 399412. doi: 10.3934/dcds.2003.9.399 
[12] 
Evelyn Sander, E. Barreto, S.J. Schiff, P. So. Dynamics of noninvertibility in delay equations. Conference Publications, 2005, 2005 (Special) : 768777. doi: 10.3934/proc.2005.2005.768 
[13] 
Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Timefractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems  A, 2020 doi: 10.3934/dcds.2020137 
[14] 
Philippe Gravejat. Asymptotics of the solitary waves for the generalized KadomtsevPetviashvili equations. Discrete & Continuous Dynamical Systems  A, 2008, 21 (3) : 835882. doi: 10.3934/dcds.2008.21.835 
[15] 
Veronica Felli, Ana Primo. Classification of local asymptotics for solutions to heat equations with inversesquare potentials. Discrete & Continuous Dynamical Systems  A, 2011, 31 (1) : 65107. doi: 10.3934/dcds.2011.31.65 
[16] 
Jan Burczak, Rafael GraneroBelinchón. Boundedness and homogeneous asymptotics for a fractional logistic KellerSegel equations. Discrete & Continuous Dynamical Systems  S, 2020, 13 (2) : 139164. doi: 10.3934/dcdss.2020008 
[17] 
Sergey A. Denisov. The generic behavior of solutions to some evolution equations: Asymptotics and Sobolev norms. Discrete & Continuous Dynamical Systems  A, 2011, 30 (1) : 77113. doi: 10.3934/dcds.2011.30.77 
[18] 
Jean Dolbeault, Giuseppe Toscani. Fast diffusion equations: Matching large time asymptotics by relative entropy methods. Kinetic & Related Models, 2011, 4 (3) : 701716. doi: 10.3934/krm.2011.4.701 
[19] 
Marie Doumic, Miguel Escobedo. Time asymptotics for a critical case in fragmentation and growthfragmentation equations. Kinetic & Related Models, 2016, 9 (2) : 251297. doi: 10.3934/krm.2016.9.251 
[20] 
Jan Sieber, Matthias Wolfrum, Mark Lichtner, Serhiy Yanchuk. On the stability of periodic orbits in delay equations with large delay. Discrete & Continuous Dynamical Systems  A, 2013, 33 (7) : 31093134. doi: 10.3934/dcds.2013.33.3109 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]