• Previous Article
    Asymptotic stability for dynamical systems associated with the one-dimensional Frémond model of shape memory alloys
  • PROC Home
  • This Issue
  • Next Article
    Multiple homoclinic orbits for a class of second order perturbed Hamiltonian systems
2003, 2003(Special): 788-797. doi: 10.3934/proc.2003.2003.788

Compactified isospectral sets of complex tridiagonal Hessenberg matrices

1. 

Department of Mathematics Box 19408, The University of Texas at Arlington, Arlington, TX 76019-0408, United States

Received  August 2002 Revised  March 2003 Published  April 2003

The completed flows of the complex Toda lattice hierarchy are used to compactify an arbitrary isospectral set $J$^ of complex tridiagonal Hessenberg matrices. When the eigenvalues are distinct, this compactification, as found by other authors, is a toric variety; it is the closure of a generic orbit of a complex maximal torus inside a flag manifold. This torus becomes a direct product, A, of a nonmaximal diagonal subgroup and a unipotent group when eigenvalues coincide. We describe the compactification of $J$^ in this case as the closure of a generic orbit of A. We are interested mainly in the structure of its boundary, which is a union of nonmaximal orbits of A. There is a one-to-one correspondence between the connected components of the intersections of $J$^ with the lower-dimensional symplectic leaves and the faces of the moment polytope where at least one vertex is a minimal coset representative of a certain quotient of the Weyl group.
Citation: Barbara A. Shipman. Compactified isospectral sets of complex tridiagonal Hessenberg matrices. Conference Publications, 2003, 2003 (Special) : 788-797. doi: 10.3934/proc.2003.2003.788
[1]

Carlos Tomei. The Toda lattice, old and new. Journal of Geometric Mechanics, 2013, 5 (4) : 511-530. doi: 10.3934/jgm.2013.5.511

[2]

Gerald Teschl. On the spatial asymptotics of solutions of the Toda lattice. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1233-1239. doi: 10.3934/dcds.2010.27.1233

[3]

Andreas Henrici. Symmetries of the periodic Toda lattice, with an application to normal forms and perturbations of the lattice with Dirichlet boundary conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2949-2977. doi: 10.3934/dcds.2015.35.2949

[4]

Víctor Ayala, Adriano Da Silva, Philippe Jouan. Jordan decomposition and the recurrent set of flows of automorphisms. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1543-1559. doi: 10.3934/dcds.2020330

[5]

Hans Koch, Héctor E. Lomelí. On Hamiltonian flows whose orbits are straight lines. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2091-2104. doi: 10.3934/dcds.2014.34.2091

[6]

Hans Koch. On the renormalization of Hamiltonian flows, and critical invariant tori. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 633-646. doi: 10.3934/dcds.2002.8.633

[7]

Denis G. Gaidashev. Renormalization of isoenergetically degenerate hamiltonian flows and associated bifurcations of invariant tori. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 63-102. doi: 10.3934/dcds.2005.13.63

[8]

César J. Niche. Non-contractible periodic orbits of Hamiltonian flows on twisted cotangent bundles. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 617-630. doi: 10.3934/dcds.2006.14.617

[9]

Joachim von Below, José A. Lubary. Isospectral infinite graphs and networks and infinite eigenvalue multiplicities. Networks and Heterogeneous Media, 2009, 4 (3) : 453-468. doi: 10.3934/nhm.2009.4.453

[10]

Yuri B. Suris. Variational formulation of commuting Hamiltonian flows: Multi-time Lagrangian 1-forms. Journal of Geometric Mechanics, 2013, 5 (3) : 365-379. doi: 10.3934/jgm.2013.5.365

[11]

Calin Iulian Martin. A Hamiltonian approach for nonlinear rotational capillary-gravity water waves in stratified flows. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 387-404. doi: 10.3934/dcds.2017016

[12]

Yong Liu. Even solutions of the Toda system with prescribed asymptotic behavior. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1779-1790. doi: 10.3934/cpaa.2011.10.1779

[13]

Manuel del Pino, Michal Kowalczyk, Juncheng Wei. The Jacobi-Toda system and foliated interfaces. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 975-1006. doi: 10.3934/dcds.2010.28.975

[14]

Yong Liu, Jing Tian, Xuelin Yong. On the even solutions of the Toda system: A degree argument approach. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1895-1916. doi: 10.3934/cpaa.2021075

[15]

Linlin Dou. Singular solutions of Toda system in high dimensions. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3119-3142. doi: 10.3934/dcds.2022011

[16]

Iryna Egorova, Johanna Michor, Gerald Teschl. Rarefaction waves for the Toda equation via nonlinear steepest descent. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2007-2028. doi: 10.3934/dcds.2018081

[17]

Isaac Alvarez-Romero, Gerald Teschl. On uniqueness properties of solutions of the Toda and Kac-van Moerbeke hierarchies. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2259-2264. doi: 10.3934/dcds.2017098

[18]

Weiwei Ao. Sharp estimates for fully bubbling solutions of $B_2$ Toda system. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1759-1788. doi: 10.3934/dcds.2016.36.1759

[19]

Lan Wen. On the preperiodic set. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 237-241. doi: 10.3934/dcds.2000.6.237

[20]

François Berteloot, Tien-Cuong Dinh. The Mandelbrot set is the shadow of a Julia set. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6611-6633. doi: 10.3934/dcds.2020262

 Impact Factor: 

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]