-
Previous Article
Exponential decay of oscillations in a multidimensional delay differential system
- PROC Home
- This Issue
-
Next Article
Compactified isospectral sets of complex tridiagonal Hessenberg matrices
Asymptotic stability for dynamical systems associated with the one-dimensional Frémond model of shape memory alloys
1. | Department of Information Environment Design and Integration, School of Information Environment, Tokyo Denki University, 2-1200 Muzai Gakuendai, Inzai Chiba, 270-1382, Japan |
[1] |
Toyohiko Aiki, Martijn Anthonissen, Adrian Muntean. On a one-dimensional shape-memory alloy model in its fast-temperature-activation limit. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 15-28. doi: 10.3934/dcdss.2012.5.15 |
[2] |
Michel Frémond, Elisabetta Rocca. A model for shape memory alloys with the possibility of voids. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1633-1659. doi: 10.3934/dcds.2010.27.1633 |
[3] |
Diego Grandi, Ulisse Stefanelli. The Souza-Auricchio model for shape-memory alloys. Discrete and Continuous Dynamical Systems - S, 2015, 8 (4) : 723-747. doi: 10.3934/dcdss.2015.8.723 |
[4] |
Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. Thermal control of the Souza-Auricchio model for shape memory alloys. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 369-386. doi: 10.3934/dcdss.2013.6.369 |
[5] |
Ferdinando Auricchio, Elena Bonetti. A new "flexible" 3D macroscopic model for shape memory alloys. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 277-291. doi: 10.3934/dcdss.2013.6.277 |
[6] |
Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete and Continuous Dynamical Systems - S, 2021, 14 (11) : 3925-3952. doi: 10.3934/dcdss.2020459 |
[7] |
Zhi-An Wang, Kun Zhao. Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model. Communications on Pure and Applied Analysis, 2013, 12 (6) : 3027-3046. doi: 10.3934/cpaa.2013.12.3027 |
[8] |
Takashi Suzuki, Shuji Yoshikawa. Stability of the steady state for multi-dimensional thermoelastic systems of shape memory alloys. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 209-217. doi: 10.3934/dcdss.2012.5.209 |
[9] |
Rogério Martins. One-dimensional attractor for a dissipative system with a cylindrical phase space. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 533-547. doi: 10.3934/dcds.2006.14.533 |
[10] |
Steinar Evje, Huanyao Wen, Lei Yao. Global solutions to a one-dimensional non-conservative two-phase model. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1927-1955. doi: 10.3934/dcds.2016.36.1927 |
[11] |
Linxiang Wang, Roderick Melnik. Dynamics of shape memory alloys patches with mechanically induced transformations. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1237-1252. doi: 10.3934/dcds.2006.15.1237 |
[12] |
Shuji Yoshikawa, Irena Pawłow, Wojciech M. Zajączkowski. A quasilinear thermoviscoelastic system for shape memory alloys with temperature dependent specific heat. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1093-1115. doi: 10.3934/cpaa.2009.8.1093 |
[13] |
Tomáš Roubíček. Modelling of thermodynamics of martensitic transformation in shape-memory alloys. Conference Publications, 2007, 2007 (Special) : 892-902. doi: 10.3934/proc.2007.2007.892 |
[14] |
Alessia Berti, Claudio Giorgi, Elena Vuk. Free energies and pseudo-elastic transitions for shape memory alloys. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 293-316. doi: 10.3934/dcdss.2013.6.293 |
[15] |
Tomasz Nowicki, Grezegorz Świrszcz. Neutral one-dimensional attractor of a two-dimensional system derived from Newton's means. Conference Publications, 2005, 2005 (Special) : 700-709. doi: 10.3934/proc.2005.2005.700 |
[16] |
Yuxi Hu, Na Wang. On global solutions in one-dimensional thermoelasticity with second sound in the half line. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1671-1683. doi: 10.3934/cpaa.2015.14.1671 |
[17] |
Brahim Alouini. Global attractor for a one dimensional weakly damped half-wave equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2655-2670. doi: 10.3934/dcdss.2020410 |
[18] |
Dirk Blömker, Bernhard Gawron, Thomas Wanner. Nucleation in the one-dimensional stochastic Cahn-Hilliard model. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 25-52. doi: 10.3934/dcds.2010.27.25 |
[19] |
David Henry, Rossen Ivanov. One-dimensional weakly nonlinear model equations for Rossby waves. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3025-3034. doi: 10.3934/dcds.2014.34.3025 |
[20] |
Haibo Cui, Junpei Gao, Lei Yao. Asymptotic behavior of the one-dimensional compressible micropolar fluid model. Electronic Research Archive, 2021, 29 (2) : 2063-2075. doi: 10.3934/era.2020105 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]