2003, 2003(Special): 864-871. doi: 10.3934/proc.2003.2003.864

Cellular neural networks: asymmetric templates and spatial chaos

1. 

Department of Mathematics and Statistics, Wright State University Dayton,, OH 45435, United States

Received  June 2002 Revised  April 2003 Published  April 2003

We consider a Cellular Neural Network (CNN), with a bias term, on the integer lattice $Z^2$ in the plane $R^2$. A space-dependent, asymmetric coupling (template) appropriate for CNN on the hexagonal lattice on $R^2$ is studied. We characterize the mosaic patterns and study their spatial entropy. Asymmetry of the template has a decisive effect on spatial entropy for all known results.
Citation: Larry Turyn. Cellular neural networks: asymmetric templates and spatial chaos. Conference Publications, 2003, 2003 (Special) : 864-871. doi: 10.3934/proc.2003.2003.864
[1]

A. V. Babin. Preservation of spatial patterns by a hyperbolic equation. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 1-19. doi: 10.3934/dcds.2004.10.1

[2]

Hannes Uecker. Optimal spatial patterns in feeding, fishing, and pollution. Discrete and Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021099

[3]

Laura M. Smith, Andrea L. Bertozzi, P. Jeffrey Brantingham, George E. Tita, Matthew Valasik. Adaptation of an ecological territorial model to street gang spatial patterns in Los Angeles. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3223-3244. doi: 10.3934/dcds.2012.32.3223

[4]

Benedetto Bozzini, Deborah Lacitignola, Ivonne Sgura. Morphological spatial patterns in a reaction diffusion model for metal growth. Mathematical Biosciences & Engineering, 2010, 7 (2) : 237-258. doi: 10.3934/mbe.2010.7.237

[5]

Marcello Delitala, Tommaso Lorenzi. Emergence of spatial patterns in a mathematical model for the co-culture dynamics of epithelial-like and mesenchymal-like cells. Mathematical Biosciences & Engineering, 2017, 14 (1) : 79-93. doi: 10.3934/mbe.2017006

[6]

Fan Jia, Xue-Cheng Tai, Jun Liu. Nonlocal regularized CNN for image segmentation. Inverse Problems and Imaging, 2020, 14 (5) : 891-911. doi: 10.3934/ipi.2020041

[7]

Nicolas Lermé, François Malgouyres, Dominique Hamoir, Emmanuelle Thouin. Bayesian image restoration for mosaic active imaging. Inverse Problems and Imaging, 2014, 8 (3) : 733-760. doi: 10.3934/ipi.2014.8.733

[8]

Ho Law, Gary P. T. Choi, Ka Chun Lam, Lok Ming Lui. Quasiconformal model with CNN features for large deformation image registration. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022010

[9]

Juan Pablo Cárdenas, Gerardo Vidal, Gastón Olivares. Complexity, selectivity and asymmetry in the conformation of the power phenomenon. Analysis of Chilean society. Networks and Heterogeneous Media, 2015, 10 (1) : 167-194. doi: 10.3934/nhm.2015.10.167

[10]

Jide Sun, Lili Wang. The interaction between BIM's promotion and interest game under information asymmetry. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1301-1319. doi: 10.3934/jimo.2015.11.1301

[11]

Chuan Ding, Da-Hai Li. Angel capitalists exit decisions under information asymmetry: IPO or acquisitions. Journal of Industrial and Management Optimization, 2021, 17 (1) : 369-392. doi: 10.3934/jimo.2019116

[12]

Mingyong Lai, Hongzhao Yang, Erbao Cao, Duo Qiu, Jing Qiu. Optimal decisions for a dual-channel supply chain under information asymmetry. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1023-1040. doi: 10.3934/jimo.2017088

[13]

Linfei Wang, Dapeng Tao, Ruonan Wang, Ruxin Wang, Hao Li. Big Map R-CNN for object detection in large-scale remote sensing images. Mathematical Foundations of Computing, 2019, 2 (4) : 299-314. doi: 10.3934/mfc.2019019

[14]

Marat Akhmet, Ejaily Milad Alejaily. Abstract similarity, fractals and chaos. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2479-2497. doi: 10.3934/dcdsb.2020191

[15]

Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757

[16]

Arsen R. Dzhanoev, Alexander Loskutov, Hongjun Cao, Miguel A.F. Sanjuán. A new mechanism of the chaos suppression. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 275-284. doi: 10.3934/dcdsb.2007.7.275

[17]

Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov. Statistical properties of dynamical chaos. Mathematical Biosciences & Engineering, 2004, 1 (1) : 161-184. doi: 10.3934/mbe.2004.1.161

[18]

Y. Charles Li. Chaos phenotypes discovered in fluids. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1383-1398. doi: 10.3934/dcds.2010.26.1383

[19]

Kaijen Cheng, Kenneth Palmer. Chaos in a model for masting. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1917-1932. doi: 10.3934/dcdsb.2015.20.1917

[20]

Flaviano Battelli, Michal Fe?kan. Chaos in forced impact systems. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 861-890. doi: 10.3934/dcdss.2013.6.861

 Impact Factor: 

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]