2003, 2003(Special): 898-904. doi: 10.3934/proc.2003.2003.898

Learning theory applied to Sigmoid network classification of protein biological function using primary protein structure

1. 

College of Information Technology The University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, United States

Received  September 2002 Revised  March 2003 Published  April 2003

Recently, Valiant’s Probably Approximately Correct (PAC) learning theory has been extended to learning m-dependent data. With this extension, training data set size for sigmoid neural networks have been bounded without underlying assumptions for the distribution of the training data. These extensions allow learning theory to be applied to training sets which are definitely not independent samples of a complete input space. In our work, we are developing length independent measures as training data for protein classification. This paper applies these learning theory methods to the problem of training a sigmoid neural network to recognize protein biological activity classes as a function of protein primary structure. Specifically, we explore the theoretical training set sizes for classifiers using the full amino acid sequence of the protein as the training data and using length independent measures as the training data. Results show bounds for training set sizes given protein size limits for the full sequence input compared to bounds for input that is sequence length independent.
Citation: D. Warren, K Najarian. Learning theory applied to Sigmoid network classification of protein biological function using primary protein structure. Conference Publications, 2003, 2003 (Special) : 898-904. doi: 10.3934/proc.2003.2003.898
[1]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[2]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[3]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[4]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[5]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[6]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[7]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[8]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[9]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[10]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[11]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[12]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

 Impact Factor: 

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]