
Previous Article
Multiple solutions of superquadratic second order dynamical systems
 PROC Home
 This Issue

Next Article
Remarks on positive solutions of some three point boundary value problems
Boundary conditions for multidimensional hyperbolic relaxation problems
1.  Department of Mathematics, California State University, Long Beach, CA 90840 
[1] 
Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems  A, 2000, 6 (3) : 673682. doi: 10.3934/dcds.2000.6.673 
[2] 
Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : 349367. doi: 10.3934/nhm.2016.11.349 
[3] 
Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete & Continuous Dynamical Systems  A, 2017, 37 (3) : 16911706. doi: 10.3934/dcds.2017070 
[4] 
Ming Mei, Yau Shu Wong, Liping Liu. Phase transitions in a coupled viscoelastic system with periodic initialboundary condition: (I) Existence and uniform boundedness. Discrete & Continuous Dynamical Systems  B, 2007, 7 (4) : 825837. doi: 10.3934/dcdsb.2007.7.825 
[5] 
Lan Zeng, Guoxi Ni, Yingying Li. Low Mach number limit of strong solutions for 3D full compressible MHD equations with Dirichlet boundary condition. Discrete & Continuous Dynamical Systems  B, 2019, 24 (10) : 55035522. doi: 10.3934/dcdsb.2019068 
[6] 
R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems  A, 1998, 4 (3) : 497506. doi: 10.3934/dcds.1998.4.497 
[7] 
Samia Challal, Abdeslem Lyaghfouri. The heterogeneous dam problem with leaky boundary condition. Communications on Pure & Applied Analysis, 2011, 10 (1) : 93125. doi: 10.3934/cpaa.2011.10.93 
[8] 
Nicolas Van Goethem. The Frank tensor as a boundary condition in intrinsic linearized elasticity. Journal of Geometric Mechanics, 2016, 8 (4) : 391411. doi: 10.3934/jgm.2016013 
[9] 
H. Beirão da Veiga. Vorticity and regularity for flows under the Navier boundary condition. Communications on Pure & Applied Analysis, 2006, 5 (4) : 907918. doi: 10.3934/cpaa.2006.5.907 
[10] 
Wenzhen Gan, Peng Zhou. A revisit to the diffusive logistic model with free boundary condition. Discrete & Continuous Dynamical Systems  B, 2016, 21 (3) : 837847. doi: 10.3934/dcdsb.2016.21.837 
[11] 
Raffaela Capitanelli. Robin boundary condition on scale irregular fractals. Communications on Pure & Applied Analysis, 2010, 9 (5) : 12211234. doi: 10.3934/cpaa.2010.9.1221 
[12] 
Jesús Ildefonso Díaz, L. Tello. On a climate model with a dynamic nonlinear diffusive boundary condition. Discrete & Continuous Dynamical Systems  S, 2008, 1 (2) : 253262. doi: 10.3934/dcdss.2008.1.253 
[13] 
JeanFrançois Coulombel, Frédéric Lagoutière. The Neumann numerical boundary condition for transport equations. Kinetic & Related Models, 2020, 13 (1) : 132. doi: 10.3934/krm.2020001 
[14] 
M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete & Continuous Dynamical Systems  S, 2009, 2 (3) : 473481. doi: 10.3934/dcdss.2009.2.473 
[15] 
Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615620. doi: 10.3934/proc.2015.0615 
[16] 
K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. selfsimilar vanishing diffusion limits. Communications on Pure & Applied Analysis, 2002, 1 (1) : 5176. doi: 10.3934/cpaa.2002.1.51 
[17] 
Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks & Heterogeneous Media, 2015, 10 (2) : 343367. doi: 10.3934/nhm.2015.10.343 
[18] 
J. GarcíaMelián, Julio D. Rossi, José Sabina de Lis. A convexconcave elliptic problem with a parameter on the boundary condition. Discrete & Continuous Dynamical Systems  A, 2012, 32 (4) : 10951124. doi: 10.3934/dcds.2012.32.1095 
[19] 
Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2005, 4 (4) : 861869. doi: 10.3934/cpaa.2005.4.861 
[20] 
JongShenq Guo. Blowup behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems  A, 2007, 18 (1) : 7184. doi: 10.3934/dcds.2007.18.71 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]