2005, 2005(Special): 1-10. doi: 10.3934/proc.2005.2005.1

Formal normal forms for holomorphic maps tangent to the identity

1. 

Dipartimento di Matematica, Università di Pisa, Via Buonarroti 2, 56127 Pisa, Italy

2. 

Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 00133 Roma, Italy

Received  September 2004 Published  September 2005

We describe a procedure for constructing formal normal forms of holomorphic maps with a hypersurface of mixed points, and we apply it to obtain a complete list of formal normal forms for 2-dimensional holomorphic maps tangential to a curve of mixed points.
Citation: Marco Abate, Francesca Tovena. Formal normal forms for holomorphic maps tangent to the identity. Conference Publications, 2005, 2005 (Special) : 1-10. doi: 10.3934/proc.2005.2005.1
[1]

Ricardo Miranda Martins. Formal equivalence between normal forms of reversible and hamiltonian dynamical systems. Communications on Pure and Applied Analysis, 2014, 13 (2) : 703-713. doi: 10.3934/cpaa.2014.13.703

[2]

Luigi Chierchia, Gabriella Pinzari. Planetary Birkhoff normal forms. Journal of Modern Dynamics, 2011, 5 (4) : 623-664. doi: 10.3934/jmd.2011.5.623

[3]

Shui-Nee Chow, Kening Lu, Yun-Qiu Shen. Normal forms for quasiperiodic evolutionary equations. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 65-94. doi: 10.3934/dcds.1996.2.65

[4]

Xingwu Chen, Weinian Zhang. Normal forms of planar switching systems. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6715-6736. doi: 10.3934/dcds.2016092

[5]

A. Katok and R. J. Spatzier. Nonstationary normal forms and rigidity of group actions. Electronic Research Announcements, 1996, 2: 124-133.

[6]

Boris Kalinin, Victoria Sadovskaya. Normal forms for non-uniform contractions. Journal of Modern Dynamics, 2017, 11: 341-368. doi: 10.3934/jmd.2017014

[7]

Chiara Caracciolo, Ugo Locatelli. Computer-assisted estimates for Birkhoff normal forms. Journal of Computational Dynamics, 2020, 7 (2) : 425-460. doi: 10.3934/jcd.2020017

[8]

Changyou Wang, Shenzhou Zheng. Energy identity for a class of approximate biharmonic maps into sphere in dimension four. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 861-878. doi: 10.3934/dcds.2013.33.861

[9]

Sikhar Patranabis, Debdeep Mukhopadhyay. Identity-based key aggregate cryptosystem from multilinear maps. Advances in Mathematics of Communications, 2019, 13 (4) : 759-778. doi: 10.3934/amc.2019044

[10]

P. De Maesschalck. Gevrey normal forms for nilpotent contact points of order two. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 677-688. doi: 10.3934/dcds.2014.34.677

[11]

Weigu Li, Jaume Llibre, Hao Wu. Polynomial and linearized normal forms for almost periodic differential systems. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 345-360. doi: 10.3934/dcds.2016.36.345

[12]

Vincent Naudot, Jiazhong Yang. Finite smooth normal forms and integrability of local families of vector fields. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 667-682. doi: 10.3934/dcdss.2010.3.667

[13]

Tomas Johnson, Warwick Tucker. Automated computation of robust normal forms of planar analytic vector fields. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 769-782. doi: 10.3934/dcdsb.2009.12.769

[14]

Gladston Duarte, Àngel Jorba. Using normal forms to study Oterma's transition in the Planar RTBP. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022073

[15]

H. E. Lomelí, J. D. Meiss. Generating forms for exact volume-preserving maps. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 361-377. doi: 10.3934/dcdss.2009.2.361

[16]

Majid Gazor, Mojtaba Moazeni. Parametric normal forms for Bogdanov--Takens singularity; the generalized saddle-node case. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 205-224. doi: 10.3934/dcds.2015.35.205

[17]

Alessandro Fortunati, Stephen Wiggins. Normal forms à la Moser for aperiodically time-dependent Hamiltonians in the vicinity of a hyperbolic equilibrium. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1109-1118. doi: 10.3934/dcdss.2016044

[18]

Teresa Faria. Normal forms for semilinear functional differential equations in Banach spaces and applications. Part II. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 155-176. doi: 10.3934/dcds.2001.7.155

[19]

Andreas Henrici. Symmetries of the periodic Toda lattice, with an application to normal forms and perturbations of the lattice with Dirichlet boundary conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2949-2977. doi: 10.3934/dcds.2015.35.2949

[20]

Claude Carlet. Expressing the minimum distance, weight distribution and covering radius of codes by means of the algebraic and numerical normal forms of their indicators. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022047

 Impact Factor: 

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]