
Previous Article
Numerical results for floating drops
 PROC Home
 This Issue

Next Article
An integral representation of the determinant of a matrix and its applications
On some fractional differential equations in the Hilbert space
1.  Alexandria University, Faculty of Science, Egypt 
[1] 
ZhanDong Mei, Jigen Peng, Yang Zhang. On general fractional abstract Cauchy problem. Communications on Pure & Applied Analysis, 2013, 12 (6) : 27532772. doi: 10.3934/cpaa.2013.12.2753 
[2] 
Onur Alp İlhan. Solvability of some partial integral equations in Hilbert space. Communications on Pure & Applied Analysis, 2008, 7 (4) : 837844. doi: 10.3934/cpaa.2008.7.837 
[3] 
Anna Karczewska, Carlos Lizama. On stochastic fractional Volterra equations in Hilbert space. Conference Publications, 2007, 2007 (Special) : 541550. doi: 10.3934/proc.2007.2007.541 
[4] 
Sergio Albeverio, Sonia Mazzucchi. Infinite dimensional integrals and partial differential equations for stochastic and quantum phenomena. Journal of Geometric Mechanics, 2019, 11 (2) : 123137. doi: 10.3934/jgm.2019006 
[5] 
Andrey B. Muravnik. On the Cauchy problem for differentialdifference parabolic equations with highorder nonlocal terms of general kind. Discrete & Continuous Dynamical Systems  A, 2006, 16 (3) : 541561. doi: 10.3934/dcds.2006.16.541 
[6] 
Rehana Naz, Fazal M. Mahomed. Characterization of partial Hamiltonian operators and related first integrals. Discrete & Continuous Dynamical Systems  S, 2018, 11 (4) : 723734. doi: 10.3934/dcdss.2018045 
[7] 
Pengyu Chen, Yongxiang Li, Xuping Zhang. On the initial value problem of fractional stochastic evolution equations in Hilbert spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 18171840. doi: 10.3934/cpaa.2015.14.1817 
[8] 
P. Chiranjeevi, V. Kannan, Sharan Gopal. Periodic points and periods for operators on hilbert space. Discrete & Continuous Dynamical Systems  A, 2013, 33 (9) : 42334237. doi: 10.3934/dcds.2013.33.4233 
[9] 
Kai Liu. Stationary solutions of neutral stochastic partial differential equations with delays in the highestorder derivatives. Discrete & Continuous Dynamical Systems  B, 2018, 23 (9) : 39153934. doi: 10.3934/dcdsb.2018117 
[10] 
Lok Ming Lui, Yalin Wang, Tony F. Chan, Paul M. Thompson. Brain anatomical feature detection by solving partial differential equations on general manifolds. Discrete & Continuous Dynamical Systems  B, 2007, 7 (3) : 605618. doi: 10.3934/dcdsb.2007.7.605 
[11] 
Ali Hamidoǧlu. On general form of the Tanh method and its application to nonlinear partial differential equations. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 175181. doi: 10.3934/naco.2016007 
[12] 
Angelo Favini. A general approach to identification problems and applications to partial differential equations. Conference Publications, 2015, 2015 (special) : 428435. doi: 10.3934/proc.2015.0428 
[13] 
M. Nakamura, Tohru Ozawa. The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order. Discrete & Continuous Dynamical Systems  A, 1999, 5 (1) : 215231. doi: 10.3934/dcds.1999.5.215 
[14] 
Huijun He, Zhaoyang Yin. On the Cauchy problem for a generalized twocomponent shallow water wave system with fractional higherorder inertia operators. Discrete & Continuous Dynamical Systems  A, 2017, 37 (3) : 15091537. doi: 10.3934/dcds.2017062 
[15] 
Liping Luo, Zhenguo Luo, Yunhui Zeng. New results for oscillation of fractional partial differential equations with damping term. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020336 
[16] 
Tyrone E. Duncan. Some linearquadratic stochastic differential games for equations in Hilbert spaces with fractional Brownian motions. Discrete & Continuous Dynamical Systems  A, 2015, 35 (11) : 54355445. doi: 10.3934/dcds.2015.35.5435 
[17] 
Belkacem SaidHouari, Salim A. Messaoudi. General decay estimates for a Cauchy viscoelastic wave problem. Communications on Pure & Applied Analysis, 2014, 13 (4) : 15411551. doi: 10.3934/cpaa.2014.13.1541 
[18] 
Jean Ginibre, Giorgio Velo. Modified wave operators without loss of regularity for some long range Hartree equations. II. Communications on Pure & Applied Analysis, 2015, 14 (4) : 13571376. doi: 10.3934/cpaa.2015.14.1357 
[19] 
Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. Kinetic & Related Models, 2012, 5 (3) : 505516. doi: 10.3934/krm.2012.5.505 
[20] 
Eddye Bustamante, José Jiménez Urrea, Jorge Mejía. The Cauchy problem for a family of twodimensional fractional BenjaminOno equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 11771203. doi: 10.3934/cpaa.2019057 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]