• Previous Article
    Nonexistence of positive solutions of quasilinear elliptic equations with singularity on the boundary in strip-like domains
  • PROC Home
  • This Issue
  • Next Article
    A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution
2005, 2005(Special): 365-375. doi: 10.3934/proc.2005.2005.365

Riesz basis property and related results for a Rao-Nakra sandwich beam

1. 

Department of Mathematics, Iowa State University, Ames, IA 50011, United States

2. 

Iowa State University, Department of Mathematics, Ames, IA 50011, United States

Received  September 2004 Revised  May 2005 Published  September 2005

We consider a three layer Rao-Nakra sandwich beam with distinct wave speeds. We prove that the eigenvectors form a Riesz basis for the natural energy space. In the damped case, we give precise conditions under which there is a uniform exponential decay of energy. We also consider the problem of boundary control using bending moment and lateral force control at one end. We prove that the space of exact controllability has finite co-dimension and provide sufficient conditions (related to small damping) for exact controllability to a zero energy state.
Citation: Scott W. Hansen, Rajeev Rajaram. Riesz basis property and related results for a Rao-Nakra sandwich beam. Conference Publications, 2005, 2005 (Special) : 365-375. doi: 10.3934/proc.2005.2005.365
[1]

Klaus-Jochen Engel, Marjeta Kramar FijavŽ. Exact and positive controllability of boundary control systems. Networks and Heterogeneous Media, 2017, 12 (2) : 319-337. doi: 10.3934/nhm.2017014

[2]

Rajeev Rajaram, Scott W. Hansen. Null controllability of a damped Mead-Markus sandwich beam. Conference Publications, 2005, 2005 (Special) : 746-755. doi: 10.3934/proc.2005.2005.746

[3]

Scott W. Hansen, Andrei A. Lyashenko. Exact controllability of a beam in an incompressible inviscid fluid. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 59-78. doi: 10.3934/dcds.1997.3.59

[4]

Mohammed Aassila. Exact boundary controllability of a coupled system. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 665-672. doi: 10.3934/dcds.2000.6.665

[5]

Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations and Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020

[6]

Roberto Triggiani. The coupled PDE system of a composite (sandwich) beam revisited. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 285-298. doi: 10.3934/dcdsb.2003.3.285

[7]

Tatsien Li (Daqian Li). Global exact boundary controllability for first order quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1419-1432. doi: 10.3934/dcdsb.2010.14.1419

[8]

Arnaud Heibig, Mohand Moussaoui. Exact controllability of the wave equation for domains with slits and for mixed boundary conditions. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 367-386. doi: 10.3934/dcds.1996.2.367

[9]

Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations and Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014

[10]

Scott W. Hansen, Oleg Yu Imanuvilov. Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions. Mathematical Control and Related Fields, 2011, 1 (2) : 189-230. doi: 10.3934/mcrf.2011.1.189

[11]

Tatsien Li, Bopeng Rao, Zhiqiang Wang. A note on the one-side exact boundary controllability for quasilinear hyperbolic systems. Communications on Pure and Applied Analysis, 2009, 8 (1) : 405-418. doi: 10.3934/cpaa.2009.8.405

[12]

Alhabib Moumni, Jawad Salhi. Exact controllability for a degenerate and singular wave equation with moving boundary. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022001

[13]

Ali Wehbe, Marwa Koumaiha, Layla Toufaily. Boundary observability and exact controllability of strongly coupled wave equations. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1269-1305. doi: 10.3934/dcdss.2021091

[14]

Fengyan Yang. Exact boundary null controllability for a coupled system of plate equations with variable coefficients. Evolution Equations and Control Theory, 2022, 11 (4) : 1071-1086. doi: 10.3934/eect.2021036

[15]

R.H. Fabiano, Scott W. Hansen. Modeling and analysis of a three-layer damped sandwich beam. Conference Publications, 2001, 2001 (Special) : 143-155. doi: 10.3934/proc.2001.2001.143

[16]

Aaron A. Allen, Scott W. Hansen. Analyticity and optimal damping for a multilayer Mead-Markus sandwich beam. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1279-1292. doi: 10.3934/dcdsb.2010.14.1279

[17]

A. Özkan Özer, Scott W. Hansen. Uniform stabilization of a multilayer Rao-Nakra sandwich beam. Evolution Equations and Control Theory, 2013, 2 (4) : 695-710. doi: 10.3934/eect.2013.2.695

[18]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control and Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[19]

Tatsien Li, Bopeng Rao, Zhiqiang Wang. Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 243-257. doi: 10.3934/dcds.2010.28.243

[20]

Umberto De Maio, Akamabadath K. Nandakumaran, Carmen Perugia. Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evolution Equations and Control Theory, 2015, 4 (3) : 325-346. doi: 10.3934/eect.2015.4.325

 Impact Factor: 

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]