• Previous Article
    Positive entire solutions of inhomogeneous semilinear elliptic equations with supercritical exponent
  • PROC Home
  • This Issue
  • Next Article
    Doubly nonlinear evolution equations and Bean's critical-state model for type-II superconductivity
2005, 2005(Special): 40-49. doi: 10.3934/proc.2005.2005.40

On the basis properties of the functions arising in the boundary control problem of a string with a variable tension

1. 

University of Alaska Fairbanks, Fairbanks, AK 99775-6660, United States

2. 

Department of Mathematics, University of Tennessee at Chattanooga, 615 McCallie Avenue, Chattanooga, TN 37403-2598, United States

Received  September 2004 Revised  March 2005 Published  September 2005

We consider the boundary control problem for a string. We say that the string is controllable if, by suitable manipulation of the exterior force, the string goes to rest. To prove our controllability results we apply the method of characteristics. Then, using the method of moments we establish a connection between the boundary control problem and the basis property of a system of functions that substitutes the system of nonharmonic exponential functions. The latter system regularly appears in the problems of controllability since the classical papers of H.O. Fattorini and D.L. Russell.
Citation: Sergei A. Avdonin, Boris P. Belinskiy. On the basis properties of the functions arising in the boundary control problem of a string with a variable tension. Conference Publications, 2005, 2005 (Special) : 40-49. doi: 10.3934/proc.2005.2005.40
[1]

Harry L. Johnson, David Russell. Transfer function approach to output specification in certain linear distributed parameter systems. Conference Publications, 2003, 2003 (Special) : 449-458. doi: 10.3934/proc.2003.2003.449

[2]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

[3]

Scott W. Hansen, Rajeev Rajaram. Riesz basis property and related results for a Rao-Nakra sandwich beam. Conference Publications, 2005, 2005 (Special) : 365-375. doi: 10.3934/proc.2005.2005.365

[4]

Getachew K. Befekadu, Eduardo L. Pasiliao. On the hierarchical optimal control of a chain of distributed systems. Journal of Dynamics and Games, 2015, 2 (2) : 187-199. doi: 10.3934/jdg.2015.2.187

[5]

Libin Wang. Breakdown of $C^1$ solution to the Cauchy problem for quasilinear hyperbolic systems with characteristics with constant multiplicity. Communications on Pure and Applied Analysis, 2003, 2 (1) : 77-89. doi: 10.3934/cpaa.2003.2.77

[6]

Kareem T. Elgindy. Optimal control of a parabolic distributed parameter system using a fully exponentially convergent barycentric shifted gegenbauer integral pseudospectral method. Journal of Industrial and Management Optimization, 2018, 14 (2) : 473-496. doi: 10.3934/jimo.2017056

[7]

Marc Puche, Timo Reis, Felix L. Schwenninger. Funnel control for boundary control systems. Evolution Equations and Control Theory, 2021, 10 (3) : 519-544. doi: 10.3934/eect.2020079

[8]

Domingo Tarzia, Carolina Bollo, Claudia Gariboldi. Convergence of simultaneous distributed-boundary parabolic optimal control problems. Evolution Equations and Control Theory, 2020, 9 (4) : 1187-1201. doi: 10.3934/eect.2020045

[9]

Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks and Heterogeneous Media, 2007, 2 (4) : 717-731. doi: 10.3934/nhm.2007.2.717

[10]

Gen Qi Xu, Siu Pang Yung. Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks and Heterogeneous Media, 2008, 3 (4) : 723-747. doi: 10.3934/nhm.2008.3.723

[11]

Ngoc Minh Trang Vu, Laurent Lefèvre. Finite rank distributed control for the resistive diffusion equation using damping assignment. Evolution Equations and Control Theory, 2015, 4 (2) : 205-220. doi: 10.3934/eect.2015.4.205

[12]

Volodymyr O. Kapustyan, Ivan O. Pyshnograiev, Olena A. Kapustian. Quasi-optimal control with a general quadratic criterion in a special norm for systems described by parabolic-hyperbolic equations with non-local boundary conditions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1243-1258. doi: 10.3934/dcdsb.2019014

[13]

Serge Nicaise. Control and stabilization of 2 × 2 hyperbolic systems on graphs. Mathematical Control and Related Fields, 2017, 7 (1) : 53-72. doi: 10.3934/mcrf.2017004

[14]

Barbara Kaltenbacher, William Rundell. On the identification of the nonlinearity parameter in the Westervelt equation from boundary measurements. Inverse Problems and Imaging, 2021, 15 (5) : 865-891. doi: 10.3934/ipi.2021020

[15]

Atte Aalto, Jarmo Malinen. Compositions of passive boundary control systems. Mathematical Control and Related Fields, 2013, 3 (1) : 1-19. doi: 10.3934/mcrf.2013.3.1

[16]

Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006

[17]

C.P. Walkden. Solutions to the twisted cocycle equation over hyperbolic systems. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 935-946. doi: 10.3934/dcds.2000.6.935

[18]

Gildas Besançon, Didier Georges, Zohra Benayache. Towards nonlinear delay-based control for convection-like distributed systems: The example of water flow control in open channel systems. Networks and Heterogeneous Media, 2009, 4 (2) : 211-221. doi: 10.3934/nhm.2009.4.211

[19]

Zhiyong Sun, Toshiharu Sugie. Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 297-318. doi: 10.3934/naco.2019020

[20]

Tomás Caraballo Garrido, Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Michael Zgurovsky. Preface to the special issue "Dynamics and control in distributed systems: Dedicated to the memory of Valery S. Melnik (1952-2007)". Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : i-v. doi: 10.3934/dcdsb.20193i

 Impact Factor: 

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]