-
Previous Article
Traveling wave solutions in cellular neural networks with multiple time delays
- PROC Home
- This Issue
-
Next Article
Magnetic hydrodynamics equations in movingboundaries
A bound for ratios of eigenvalues of Schrodinger operators on the real line
1. | Department of Mathematical Analysis, Budapest University of Technology and Economics, H 1111 Budapest, Müegyetem rkp. 3-9, Hungary, Hungary |
[1] |
Lassi Päivärinta, Valery Serov. Recovery of jumps and singularities in the multidimensional Schrodinger operator from limited data. Inverse Problems and Imaging, 2007, 1 (3) : 525-535. doi: 10.3934/ipi.2007.1.525 |
[2] |
Nakao Hayashi, Pavel I. Naumkin. Modified wave operator for Schrodinger type equations with subcritical dissipative nonlinearities. Inverse Problems and Imaging, 2007, 1 (2) : 391-398. doi: 10.3934/ipi.2007.1.391 |
[3] |
A. M. Micheletti, Angela Pistoia. Multiple eigenvalues of the Laplace-Beltrami operator and deformation of the Riemannian metric. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 709-720. doi: 10.3934/dcds.1998.4.709 |
[4] |
Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040 |
[5] |
Vladimir Georgiev, Atanas Stefanov, Mirko Tarulli. Smoothing-Strichartz estimates for the Schrodinger equation with small magnetic potential. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 771-786. doi: 10.3934/dcds.2007.17.771 |
[6] |
Marilena N. Poulou, Nikolaos M. Stavrakakis. Global attractor for a Klein-Gordon-Schrodinger type system. Conference Publications, 2007, 2007 (Special) : 844-854. doi: 10.3934/proc.2007.2007.844 |
[7] |
Anatoli Babin, Alexander Figotin. Newton's law for a trajectory of concentration of solutions to nonlinear Schrodinger equation. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1685-1718. doi: 10.3934/cpaa.2014.13.1685 |
[8] |
Maike Schulte, Anton Arnold. Discrete transparent boundary conditions for the Schrodinger equation -- a compact higher order scheme. Kinetic and Related Models, 2008, 1 (1) : 101-125. doi: 10.3934/krm.2008.1.101 |
[9] |
Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure and Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254 |
[10] |
Fioralba Cakoni, Drossos Gintides. New results on transmission eigenvalues. Inverse Problems and Imaging, 2010, 4 (1) : 39-48. doi: 10.3934/ipi.2010.4.39 |
[11] |
Manuel V. C. Vieira. Derivatives of eigenvalues and Jordan frames. Numerical Algebra, Control and Optimization, 2016, 6 (2) : 115-126. doi: 10.3934/naco.2016003 |
[12] |
Andreas Kirsch. On the existence of transmission eigenvalues. Inverse Problems and Imaging, 2009, 3 (2) : 155-172. doi: 10.3934/ipi.2009.3.155 |
[13] |
Ariel Salort. Lower bounds for Orlicz eigenvalues. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1415-1434. doi: 10.3934/dcds.2021158 |
[14] |
Takahiro Hashimoto. Nonexistence of global solutions of nonlinear Schrodinger equations in non star-shaped domains. Conference Publications, 2007, 2007 (Special) : 487-494. doi: 10.3934/proc.2007.2007.487 |
[15] |
Vesselin Petkov, Georgi Vodev. Localization of the interior transmission eigenvalues for a ball. Inverse Problems and Imaging, 2017, 11 (2) : 355-372. doi: 10.3934/ipi.2017017 |
[16] |
Armin Lechleiter. The factorization method is independent of transmission eigenvalues. Inverse Problems and Imaging, 2009, 3 (1) : 123-138. doi: 10.3934/ipi.2009.3.123 |
[17] |
Gianne Derks, Sara Maad, Björn Sandstede. Perturbations of embedded eigenvalues for the bilaplacian on a cylinder. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 801-821. doi: 10.3934/dcds.2008.21.801 |
[18] |
Alexandre Girouard, Iosif Polterovich. Upper bounds for Steklov eigenvalues on surfaces. Electronic Research Announcements, 2012, 19: 77-85. doi: 10.3934/era.2012.19.77 |
[19] |
Luc Robbiano. Counting function for interior transmission eigenvalues. Mathematical Control and Related Fields, 2016, 6 (1) : 167-183. doi: 10.3934/mcrf.2016.6.167 |
[20] |
Todd Kapitula, Björn Sandstede. Eigenvalues and resonances using the Evans function. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 857-869. doi: 10.3934/dcds.2004.10.857 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]