-
Previous Article
Eigenvalues and positive solutions of odes involving integral boundary conditions
- PROC Home
- This Issue
-
Next Article
Stability of cellular neural network with small delays
Principal eigenvalues, spectral gaps and exponential separation between positive and sign-changing solutions of parabolic equations
1. | School of Mathematics, University of Minnesota, Minneapolis, MN 55455, United States, United States |
[1] |
J. Húska, Peter Poláčik. Exponential separation and principal Floquet bundles for linear parabolic equations on $R^N$. Discrete and Continuous Dynamical Systems, 2008, 20 (1) : 81-113. doi: 10.3934/dcds.2008.20.81 |
[2] |
Janusz Mierczyński, Sylvia Novo, Rafael Obaya. Principal Floquet subspaces and exponential separations of type Ⅱ with applications to random delay differential equations. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6163-6193. doi: 10.3934/dcds.2018265 |
[3] |
J. Földes, Peter Poláčik. On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 133-157. doi: 10.3934/dcds.2009.25.133 |
[4] |
Luis Barreira, Claudia Valls. Noninvertible cocycles: Robustness of exponential dichotomies. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4111-4131. doi: 10.3934/dcds.2012.32.4111 |
[5] |
Jin Zhang, Yonghai Wang, Chengkui Zhong. Robustness of exponentially κ-dissipative dynamical systems with perturbations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3875-3890. doi: 10.3934/dcdsb.2017198 |
[6] |
Simona Fornaro, Maria Sosio, Vincenzo Vespri. Harnack type inequalities for some doubly nonlinear singular parabolic equations. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5909-5926. doi: 10.3934/dcds.2015.35.5909 |
[7] |
Soohyun Bae, Yūki Naito. Separation structure of radial solutions for semilinear elliptic equations with exponential nonlinearity. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4537-4554. doi: 10.3934/dcds.2018198 |
[8] |
Jaume Llibre, Ana Rodrigues. On the limit cycles of the Floquet differential equation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1129-1136. doi: 10.3934/dcdsb.2014.19.1129 |
[9] |
Fatma Gamze Düzgün, Ugo Gianazza, Vincenzo Vespri. $1$-dimensional Harnack estimates. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 675-685. doi: 10.3934/dcdss.2016021 |
[10] |
Hiroaki Yoshimura, Jerrold E. Marsden. Dirac cotangent bundle reduction. Journal of Geometric Mechanics, 2009, 1 (1) : 87-158. doi: 10.3934/jgm.2009.1.87 |
[11] |
Indranil Biswas, Georg Schumacher, Lin Weng. Deligne pairing and determinant bundle. Electronic Research Announcements, 2011, 18: 91-96. doi: 10.3934/era.2011.18.91 |
[12] |
Fatih Bayazit, Ulrich Groh, Rainer Nagel. Floquet representations and asymptotic behavior of periodic evolution families. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4795-4810. doi: 10.3934/dcds.2013.33.4795 |
[13] |
Xiaocai Wang. Non-floquet invariant tori in reversible systems. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3439-3457. doi: 10.3934/dcds.2018147 |
[14] |
Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Solidification and separation in saline water. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 139-155. doi: 10.3934/dcdss.2016.9.139 |
[15] |
A. Marigo. Robustness of square networks. Networks and Heterogeneous Media, 2009, 4 (3) : 537-575. doi: 10.3934/nhm.2009.4.537 |
[16] |
Pavel Krejčí, Elisabetta Rocca, Jürgen Sprekels. Phase separation in a gravity field. Discrete and Continuous Dynamical Systems - S, 2011, 4 (2) : 391-407. doi: 10.3934/dcdss.2011.4.391 |
[17] |
Bas Janssens. Infinitesimally natural principal bundles. Journal of Geometric Mechanics, 2016, 8 (2) : 199-220. doi: 10.3934/jgm.2016004 |
[18] |
Charles Curry, Stephen Marsland, Robert I McLachlan. Principal symmetric space analysis. Journal of Computational Dynamics, 2019, 6 (2) : 251-276. doi: 10.3934/jcd.2019013 |
[19] |
Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure and Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254 |
[20] |
V. Balaji, I. Biswas and D. S. Nagaraj. Principal bundles with parabolic structure. Electronic Research Announcements, 2001, 7: 37-44. |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]