-
Previous Article
Wave map with potential and hypersurface flow
- PROC Home
- This Issue
-
Next Article
Doubly nonlinear evolution equations associated with elliptic-parabolic free boundary problems
Existence of monotonic traveling waves in modified RTD-based cellular neural networks
1. | Department of Mathematics, National Central University, Chung-Li 32054 |
[1] |
Cheng-Hsiung Hsu, Suh-Yuh Yang. Structure of a class of traveling waves in delayed cellular neural networks. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 339-359. doi: 10.3934/dcds.2005.13.339 |
[2] |
Aaron Hoffman, Benjamin Kennedy. Existence and uniqueness of traveling waves in a class of unidirectional lattice differential equations. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 137-167. doi: 10.3934/dcds.2011.30.137 |
[3] |
Andrea Corli, Lorenzo di Ruvo, Luisa Malaguti, Massimiliano D. Rosini. Traveling waves for degenerate diffusive equations on networks. Networks and Heterogeneous Media, 2017, 12 (3) : 339-370. doi: 10.3934/nhm.2017015 |
[4] |
Cheng-Hsiung Hsu, Suh-Yuh Yang. Traveling wave solutions in cellular neural networks with multiple time delays. Conference Publications, 2005, 2005 (Special) : 410-419. doi: 10.3934/proc.2005.2005.410 |
[5] |
Thuc Manh Le, Nguyen Van Minh. Monotone traveling waves in a general discrete model for populations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3221-3234. doi: 10.3934/dcdsb.2017171 |
[6] |
Alejandro B. Aceves, Luis A. Cisneros-Ake, Antonmaria A. Minzoni. Asymptotics for supersonic traveling waves in the Morse lattice. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 975-994. doi: 10.3934/dcdss.2011.4.975 |
[7] |
Michael Herrmann. Homoclinic standing waves in focusing DNLS equations. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 737-752. doi: 10.3934/dcds.2011.31.737 |
[8] |
Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029 |
[9] |
Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331 |
[10] |
Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i |
[11] |
Jian Fang, Jianhong Wu. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3043-3058. doi: 10.3934/dcds.2012.32.3043 |
[12] |
Je-Chiang Tsai. Global exponential stability of traveling waves in monotone bistable systems. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 601-623. doi: 10.3934/dcds.2008.21.601 |
[13] |
Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080 |
[14] |
Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073 |
[15] |
Masahito Ohta, Grozdena Todorova. Strong instability of standing waves for nonlinear Klein-Gordon equations. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 315-322. doi: 10.3934/dcds.2005.12.315 |
[16] |
François Genoud, Charles A. Stuart. Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 137-186. doi: 10.3934/dcds.2008.21.137 |
[17] |
Marco Ghimenti, Stefan Le Coz, Marco Squassina. On the stability of standing waves of Klein-Gordon equations in a semiclassical regime. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2389-2401. doi: 10.3934/dcds.2013.33.2389 |
[18] |
Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure and Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831 |
[19] |
Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Ⅱ. Bore propagation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5543-5569. doi: 10.3934/dcds.2019244 |
[20] |
Stephen Coombes, Helmut Schmidt, Carlo R. Laing, Nils Svanstedt, John A. Wyller. Waves in random neural media. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2951-2970. doi: 10.3934/dcds.2012.32.2951 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]