2005, 2005(Special): 947-956. doi: 10.3934/proc.2005.2005.947

Notes on the convergence and applications of surrogate optimization

1. 

Department of Electrical and Computer Engineering, University of Dayton, Dayton, OH45469-0226, United States, United States

2. 

Department of Mathematics, Baylor University, Waco, TX76798-7328

Received  September 2004 Revised  April 2005 Published  September 2005

Surrogate optimization is a computational procedure that uses a sequence of approximations of the objective function to predict an optimum. Even in the case when the derivative information of the objective function is not available, the surrogate functions can still be constructed only based on the function values. Moreover, the optimization method may provide required tools for computing the numerical solution of certain nonlinear differential equations in recent engineering applications, such as the optimal determination of the perturbation values in robot control dynamic systems [13, 16, 18]. In this paper, we will present a direct convergence analysis of the surrogate optimization process in one dimensional fashion via polynomial interpolations of objective function values. Numerical experiments will be given to illustrate the effectiveness of the algorithms developed. An application in multi-agent cooperative search problem will be also presented.
Citation: Chunlei Zhang, Qin Sheng, Raúl Ordóñez. Notes on the convergence and applications of surrogate optimization. Conference Publications, 2005, 2005 (Special) : 947-956. doi: 10.3934/proc.2005.2005.947
[1]

Gleb Beliakov. Construction of aggregation operators for automated decision making via optimal interpolation and global optimization. Journal of Industrial & Management Optimization, 2007, 3 (2) : 193-208. doi: 10.3934/jimo.2007.3.193

[2]

Martha Garlick, James Powell, David Eyre, Thomas Robbins. Mathematically modeling PCR: An asymptotic approximation with potential for optimization. Mathematical Biosciences & Engineering, 2010, 7 (2) : 363-384. doi: 10.3934/mbe.2010.7.363

[3]

Xuemei Li, Rafael de la Llave. Convergence of differentiable functions on closed sets and remarks on the proofs of the "Converse Approximation Lemmas''. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 623-641. doi: 10.3934/dcdss.2010.3.623

[4]

Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic & Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006

[5]

Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure & Applied Analysis, 2021, 20 (5) : 2101-2116. doi: 10.3934/cpaa.2021059

[6]

Ta Cong Son, Nguyen Tien Dung, Nguyen Van Tan, Tran Manh Cuong, Hoang Thi Phuong Thao, Pham Dinh Tung. Weak convergence of delay SDEs with applications to Carathéodory approximation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021249

[7]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[8]

Pierre Fabrie, Elodie Jaumouillé, Iraj Mortazavi, Olivier Piller. Numerical approximation of an optimization problem to reduce leakage in water distribution systems. Mathematical Control & Related Fields, 2012, 2 (2) : 101-120. doi: 10.3934/mcrf.2012.2.101

[9]

Zehui Jia, Xue Gao, Xingju Cai, Deren Han. The convergence rate analysis of the symmetric ADMM for the nonconvex separable optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1943-1971. doi: 10.3934/jimo.2020053

[10]

Weijun Zhou, Youhua Zhou. On the strong convergence of a modified Hestenes-Stiefel method for nonconvex optimization. Journal of Industrial & Management Optimization, 2013, 9 (4) : 893-899. doi: 10.3934/jimo.2013.9.893

[11]

Chunlin Hao, Xinwei Liu. Global convergence of an SQP algorithm for nonlinear optimization with overdetermined constraints. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 19-29. doi: 10.3934/naco.2012.2.19

[12]

Jean Dolbeault, Maria J. Esteban, Michał Kowalczyk, Michael Loss. Improved interpolation inequalities on the sphere. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 695-724. doi: 10.3934/dcdss.2014.7.695

[13]

Charles Fefferman. Interpolation by linear programming I. Discrete & Continuous Dynamical Systems, 2011, 30 (2) : 477-492. doi: 10.3934/dcds.2011.30.477

[14]

Anh N. Le. Sublacunary sets and interpolation sets for nilsequences. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021175

[15]

Benjamin Jourdain, Julien Reygner. Optimal convergence rate of the multitype sticky particle approximation of one-dimensional diagonal hyperbolic systems with monotonic initial data. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 4963-4996. doi: 10.3934/dcds.2016015

[16]

Narcisse Batangouna, Morgan Pierre. Convergence of exponential attractors for a time splitting approximation of the Caginalp phase-field system. Communications on Pure & Applied Analysis, 2018, 17 (1) : 1-19. doi: 10.3934/cpaa.2018001

[17]

Esther S. Daus, Shi Jin, Liu Liu. Spectral convergence of the stochastic galerkin approximation to the boltzmann equation with multiple scales and large random perturbation in the collision kernel. Kinetic & Related Models, 2019, 12 (4) : 909-922. doi: 10.3934/krm.2019034

[18]

Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2019, 9 (1) : 1-38. doi: 10.3934/mcrf.2019001

[19]

Xiaoling Sun, Xiaojin Zheng, Juan Sun. A Lagrangian dual and surrogate method for multi-dimensional quadratic knapsack problems. Journal of Industrial & Management Optimization, 2009, 5 (1) : 47-60. doi: 10.3934/jimo.2009.5.47

[20]

Z.Y. Wu, H.W.J. Lee, F.S. Bai, L.S. Zhang. Quadratic smoothing approximation to $l_1$ exact penalty function in global optimization. Journal of Industrial & Management Optimization, 2005, 1 (4) : 533-547. doi: 10.3934/jimo.2005.1.533

 Impact Factor: 

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]