2007, 2007(Special): 1-9. doi: 10.3934/proc.2007.2007.1

Homogeneous coupled cell networks with s3-symmetric quotient


Centro de Matemática da Universidade do Porto, Faculdade de Economia, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal


Centro de Matemática da Universidade do Porto (CMUP) and Dep. de Matemática Pur, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal


Department of Mathematics, University of Houston, Houston TX 77204-3008, United States


Department of Mathematics, Purdue University, West Lafayette, IN 47906, United States

Received  September 2006 Revised  February 2007 Published  September 2007

A coupled cell network represents dynamical systems (the coupled cell systems) that can be seen as a set of individual dynamical systems (the cells) with interactions between them. Every coupled cell system associated to a network, when restricted to a flow-invariant subspace defined by the equality of certain cell coordinates, corresponds to a coupled cell system associated to a smaller network, called quotient network.
  In this paper we consider homogeneous networks admitting a S3-symmetric quotient network. We assume that a codimension-one synchrony-breaking bifurcation from a synchronous equilibrium occurs for that quotient network. We aim to investigate, for different networks admitting that S3-symmetric quotient, if the degeneracy condition leading to that bifurcation gives rise to branches of steady-state solutions outside the flow-invariant subspace associated with the quotient network. We illustrate that the existence of new solutions can be justified directly or not by the symmetry of the original network. The bifurcation analysis of a six-cell asymmetric network suggests that the existence of new solutions outside the flow-invariant subspace associated with the quotient is 'forced' by the symmetry of a five-cell quotient network.
Citation: Manuela A. D. Aguiar, Ana Paula S. Dias, Martin Golubitsky, Maria Conceição A. Leite. Homogeneous coupled cell networks with s3-symmetric quotient. Conference Publications, 2007, 2007 (Special) : 1-9. doi: 10.3934/proc.2007.2007.1

Fernando Antoneli, Ana Paula S. Dias, Rui Paiva. Coupled cell networks: Hopf bifurcation and interior symmetry. Conference Publications, 2011, 2011 (Special) : 71-78. doi: 10.3934/proc.2011.2011.71


Yu-Hao Liang, Wan-Rou Wu, Jonq Juang. Fastest synchronized network and synchrony on the Julia set of complex-valued coupled map lattices. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 173-184. doi: 10.3934/dcdsb.2016.21.173


Fanni M. Sélley. Symmetry breaking in a globally coupled map of four sites. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 3707-3734. doi: 10.3934/dcds.2018161


Sanjay Dharmavaram, Timothy J. Healey. Direct construction of symmetry-breaking directions in bifurcation problems with spherical symmetry. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1669-1684. doi: 10.3934/dcdss.2019112


A. Chauviere, T. Hillen, L. Preziosi. Modeling cell movement in anisotropic and heterogeneous network tissues. Networks & Heterogeneous Media, 2007, 2 (2) : 333-357. doi: 10.3934/nhm.2007.2.333


Kashi Behrstock, Michel Benaïm, Morris W. Hirsch. Smale strategies for network prisoner's dilemma games. Journal of Dynamics & Games, 2015, 2 (2) : 141-155. doi: 10.3934/jdg.2015.2.141


Jeremy L. Marzuola, Michael I. Weinstein. Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1505-1554. doi: 10.3934/dcds.2010.28.1505


Gheorghe Craciun, Baltazar Aguda, Avner Friedman. Mathematical Analysis Of A Modular Network Coordinating The Cell Cycle And Apoptosis. Mathematical Biosciences & Engineering, 2005, 2 (3) : 473-485. doi: 10.3934/mbe.2005.2.473


Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems & Imaging, 2021, 15 (1) : 27-40. doi: 10.3934/ipi.2020049


Thomas Hillen, Peter Hinow, Zhi-An Wang. Mathematical analysis of a kinetic model for cell movement in network tissues. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1055-1080. doi: 10.3934/dcdsb.2010.14.1055


Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367


Ana Paula S. Dias, Paul C. Matthews, Ana Rodrigues. Generating functions for Hopf bifurcation with $ S_n$-symmetry. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 823-842. doi: 10.3934/dcds.2009.25.823


Lucio Cadeddu, Giovanni Porru. Symmetry breaking in problems involving semilinear equations. Conference Publications, 2011, 2011 (Special) : 219-228. doi: 10.3934/proc.2011.2011.219


Hwai-Chiuan Wang. Stability and symmetry breaking of solutions of semilinear elliptic equations. Conference Publications, 2005, 2005 (Special) : 886-894. doi: 10.3934/proc.2005.2005.886


Claudia Anedda, Giovanni Porru. Symmetry breaking and other features for Eigenvalue problems. Conference Publications, 2011, 2011 (Special) : 61-70. doi: 10.3934/proc.2011.2011.61


Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457


Naoki Shioji, Kohtaro Watanabe. Uniqueness of positive radial solutions of the Brezis-Nirenberg problem on thin annular domains on $ {\mathbb S}^n $ and symmetry breaking bifurcations. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4727-4770. doi: 10.3934/cpaa.2020210


Jiangtao Mo, Liqun Qi, Zengxin Wei. A network simplex algorithm for simple manufacturing network model. Journal of Industrial & Management Optimization, 2005, 1 (2) : 251-273. doi: 10.3934/jimo.2005.1.251


Jae Man Park, Gang Uk Hwang, Boo Geum Jung. Design and analysis of an adaptive guard channel based CAC scheme in a 3G-WLAN integrated network. Journal of Industrial & Management Optimization, 2010, 6 (3) : 621-639. doi: 10.3934/jimo.2010.6.621


Saeed Assani, Jianlin Jiang, Ahmad Assani, Feng Yang. Scale efficiency of China's regional R & D value chain: A double frontier network DEA approach. Journal of Industrial & Management Optimization, 2021, 17 (3) : 1357-1382. doi: 10.3934/jimo.2020025

 Impact Factor: 


  • PDF downloads (46)
  • HTML views (0)
  • Cited by (0)

[Back to Top]