# American Institute of Mathematical Sciences

2007, 2007(Special): 1070-1081. doi: 10.3934/proc.2007.2007.1070

## Seventeen limit cycles bifurcations of a fifth system

 1 School of Mathematics and Information Science, Shandong University of Technology, Zibo City, Shandong Province 255049, China 2 School of Mathematics and Information Science, Shandong University of Technology,, Zibo City, Shandong Province 255049, China 3 Department of Chemical Engineering, Curtin University of Technology, GPO Box, U1987, Perth WA 6845, Australia

Revised  September 2007 Published  September 2007

In this paper, we study a kind of cubic system perturbed by degree five. By using multi-parameter perturbation theory and qualitative analysis, we obtained seventeen limit cycles with two different distributions(see Fig 5).
Citation: Yunming Zhou, Desheng Shang, Tonghua Zhang. Seventeen limit cycles bifurcations of a fifth system. Conference Publications, 2007, 2007 (Special) : 1070-1081. doi: 10.3934/proc.2007.2007.1070
 [1] Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803 [2] Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114 [3] John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805 [4] Stefano Scrobogna. Derivation of limit equations for a singular perturbation of a 3D periodic Boussinesq system. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 5979-6034. doi: 10.3934/dcds.2017259 [5] Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete & Continuous Dynamical Systems, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203 [6] Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks & Heterogeneous Media, 2015, 10 (4) : 897-948. doi: 10.3934/nhm.2015.10.897 [7] Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks & Heterogeneous Media, 2013, 8 (4) : 1009-1034. doi: 10.3934/nhm.2013.8.1009 [8] Fang Wu, Lihong Huang, Jiafu Wang. Bifurcation of the critical crossing cycle in a planar piecewise smooth system with two zones. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021264 [9] John Guckenheimer, Christian Kuehn. Homoclinic orbits of the FitzHugh-Nagumo equation: The singular-limit. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 851-872. doi: 10.3934/dcdss.2009.2.851 [10] Wei Wang, Yan Lv. Limit behavior of nonlinear stochastic wave equations with singular perturbation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 175-193. doi: 10.3934/dcdsb.2010.13.175 [11] Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047 [12] Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893 [13] Chan-Gyun Kim, Yong-Hoon Lee. A bifurcation result for two point boundary value problem with a strong singularity. Conference Publications, 2011, 2011 (Special) : 834-843. doi: 10.3934/proc.2011.2011.834 [14] Bourama Toni. Upper bounds for limit cycle bifurcation from an isochronous period annulus via a birational linearization. Conference Publications, 2005, 2005 (Special) : 846-853. doi: 10.3934/proc.2005.2005.846 [15] Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129 [16] Mark I. Vishik, Sergey Zelik. Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2059-2093. doi: 10.3934/cpaa.2014.13.2059 [17] Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 [18] Navnit Jha. Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization. Conference Publications, 2013, 2013 (special) : 355-363. doi: 10.3934/proc.2013.2013.355 [19] Shao-Yuan Huang, Shin-Hwa Wang. On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4839-4858. doi: 10.3934/dcds.2015.35.4839 [20] Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3271-3284. doi: 10.3934/dcdss.2020129

Impact Factor: