• Previous Article
    Existence of positive solutions for second order differential equations arising from chemical reactor theory
  • PROC Home
  • This Issue
  • Next Article
    Pricing realized variance options using integrated stochastic variance options in the Heston stochastic volatility model
2007, 2007(Special): 364-372. doi: 10.3934/proc.2007.2007.364

Dynamics in 30species preadtor-prey models with time delays

1. 

Department of Mathematics and Statistics, University of North Carolina in Wilmington, Wilmington, NC 28403

Received  September 2006 Revised  May 2007 Published  September 2007

We study a differential equation system with diffusion and time delays which models the dynamics of predator-prey interactions within three biological species. Our main focus is on the persistence (non-extinction) of u-species which is at the bottom of the nutrient hierarchy, and the permanence effect (long-term survival of all the predators and prey) in this model. When u-species persists in the absence of its predators, we generate a condition on the interaction rates to ensure that it does not go extinction under the predation of the v- and w-species. With certain additional conditions, we can further obtain the permanence effect (long-term survival of all three species) in the ecological system. Our proven results also explicitly present the effects of all the environmental data (growth rates and interaction rates) on the ultimate bounds of the three biological species. Numerical simulations of the model are also given to demonstrate the pattern of dynamics (extinction, persistence, and permanence)in the ecological model.
Citation: Wei Feng. Dynamics in 30species preadtor-prey models with time delays. Conference Publications, 2007, 2007 (Special) : 364-372. doi: 10.3934/proc.2007.2007.364
[1]

Jing-An Cui, Xinyu Song. Permanence of predator-prey system with stage structure. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 547-554. doi: 10.3934/dcdsb.2004.4.547

[2]

Christian Kuehn, Thilo Gross. Nonlocal generalized models of predator-prey systems. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 693-720. doi: 10.3934/dcdsb.2013.18.693

[3]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[4]

Rui Xu, M.A.J. Chaplain, F.A. Davidson. Periodic solutions of a discrete nonautonomous Lotka-Volterra predator-prey model with time delays. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 823-831. doi: 10.3934/dcdsb.2004.4.823

[5]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[6]

Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459

[7]

Fei Xu, Ross Cressman, Vlastimil Křivan. Evolution of mobility in predator-prey systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3397-3432. doi: 10.3934/dcdsb.2014.19.3397

[8]

Guanqi Liu, Yuwen Wang. Stochastic spatiotemporal diffusive predator-prey systems. Communications on Pure and Applied Analysis, 2018, 17 (1) : 67-84. doi: 10.3934/cpaa.2018005

[9]

Hongxiao Hu, Liguang Xu, Kai Wang. A comparison of deterministic and stochastic predator-prey models with disease in the predator. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2837-2863. doi: 10.3934/dcdsb.2018289

[10]

Verónica Anaya, Mostafa Bendahmane, Mauricio Sepúlveda. Mathematical and numerical analysis for Predator-prey system in a polluted environment. Networks and Heterogeneous Media, 2010, 5 (4) : 813-847. doi: 10.3934/nhm.2010.5.813

[11]

Meng Fan, Qian Wang. Periodic solutions of a class of nonautonomous discrete time semi-ratio-dependent predator-prey systems. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 563-574. doi: 10.3934/dcdsb.2004.4.563

[12]

Jacek Banasiak, Adam Błoch. Telegraph systems on networks and port-Hamiltonians. Ⅲ. Explicit representation and long-term behaviour. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022016

[13]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[14]

Benjamin Leard, Catherine Lewis, Jorge Rebaza. Dynamics of ratio-dependent Predator-Prey models with nonconstant harvesting. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 303-315. doi: 10.3934/dcdss.2008.1.303

[15]

Wei Feng, Michael T. Cowen, Xin Lu. Coexistence and asymptotic stability in stage-structured predator-prey models. Mathematical Biosciences & Engineering, 2014, 11 (4) : 823-839. doi: 10.3934/mbe.2014.11.823

[16]

Henri Berestycki, Alessandro Zilio. Predator-prey models with competition, Part Ⅲ: Classification of stationary solutions. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7141-7162. doi: 10.3934/dcds.2019299

[17]

Wan-Tong Li, Yong-Hong Fan. Periodic solutions in a delayed predator-prey models with nonmonotonic functional response. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 175-185. doi: 10.3934/dcdsb.2007.8.175

[18]

Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559

[19]

Xinjian Wang, Guo Lin. Asymptotic spreading for a time-periodic predator-prey system. Communications on Pure and Applied Analysis, 2019, 18 (6) : 2983-2999. doi: 10.3934/cpaa.2019133

[20]

Ziyad AlSharawi, Nikhil Pal, Joydev Chattopadhyay. The role of vigilance on a discrete-time predator-prey model. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022017

 Impact Factor: 

Metrics

  • PDF downloads (275)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]