• Previous Article
    On differential variational inequalities and projected dynamical systems - equivalence and a stability result
  • PROC Home
  • This Issue
  • Next Article
    The thermistor problem with degenerate thermal conductivity and metallic conduction
2007, 2007(Special): 456-466. doi: 10.3934/proc.2007.2007.456

Optimal control of a nonlinear model of economic growth


Department of Mathematics and Computer Sciences, Texas Woman's University, Denton, TX 76204


Department of Computer Mathematics and Cybernetics, Moscow State Lomonosov University, Moscow, 119992

Received  September 2006 Revised  January 2007 Published  September 2007

A nonlinear control model of a firm describing the change of production and accumulated $R&D$ investment is investigated. An optimal control problem with $R&D$ investment rate as a control parameter is solved. Optimal dynamics of economic growth of a firm versus the current cost of innovation is studied. It is analytically determined that dependent on the model parameters, the optimal control must be of one of the following types : a) piecewise constant with at most two switchings, b) piecewise constant with two switching and containing a singular arc. The intervals on which switching from regular to singular arcs occur are found numerically. Finally, optimal investment strategies and production activities are compared with econometric data of an actual firm.
Citation: Ellina Grigorieva, Evgenii Khailov. Optimal control of a nonlinear model of economic growth. Conference Publications, 2007, 2007 (Special) : 456-466. doi: 10.3934/proc.2007.2007.456

Gülden Gün Polat, Teoman Özer. On group analysis of optimal control problems in economic growth models. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2853-2876. doi: 10.3934/dcdss.2020215


Xiangyu Ge, Tifang Ye, Yanli Zhou, Guoguang Yan. Fiscal centralization vs. decentralization on economic growth and welfare: An optimal-control approach. Journal of Industrial & Management Optimization, 2016, 12 (2) : 487-504. doi: 10.3934/jimo.2016.12.487


Luis C. Corchón. A Malthus-Swan-Solow model of economic growth. Journal of Dynamics & Games, 2016, 3 (3) : 225-230. doi: 10.3934/jdg.2016012


Karam Allali, Sanaa Harroudi, Delfim F. M. Torres. Optimal control of an HIV model with a trilinear antibody growth function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021148


Luis C. Corchón. Corrigendum to "A Malthus-Swan-Solow model of economic growth". Journal of Dynamics & Games, 2018, 5 (2) : 187-187. doi: 10.3934/jdg.2018011


Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373


Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021, 11 (3) : 579-599. doi: 10.3934/mcrf.2021013


Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043


Shaoyong Lai, Yulan Zhou. A stochastic optimal growth model with a depreciation factor. Journal of Industrial & Management Optimization, 2010, 6 (2) : 283-297. doi: 10.3934/jimo.2010.6.283


Filipe Rodrigues, Cristiana J. Silva, Delfim F. M. Torres, Helmut Maurer. Optimal control of a delayed HIV model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 443-458. doi: 10.3934/dcdsb.2018030


Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021


Peng Zhong, Suzanne Lenhart. Optimal control of integrodifference equations with growth-harvesting-dispersal order. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2281-2298. doi: 10.3934/dcdsb.2012.17.2281


Shaowen Shi, Weinian Zhang. Bifurcations in an economic model with fractional degree. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4407-4431. doi: 10.3934/dcdsb.2020293


Markus Thäter, Kurt Chudej, Hans Josef Pesch. Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth. Mathematical Biosciences & Engineering, 2018, 15 (2) : 485-505. doi: 10.3934/mbe.2018022


Enrique Fernández-Cara, Juan Límaco, Laurent Prouvée. Optimal control of a two-equation model of radiotherapy. Mathematical Control & Related Fields, 2018, 8 (1) : 117-133. doi: 10.3934/mcrf.2018005


Erika Asano, Louis J. Gross, Suzanne Lenhart, Leslie A. Real. Optimal control of vaccine distribution in a rabies metapopulation model. Mathematical Biosciences & Engineering, 2008, 5 (2) : 219-238. doi: 10.3934/mbe.2008.5.219


Huaying Guo, Jin Liang. An optimal control model of carbon reduction and trading. Mathematical Control & Related Fields, 2016, 6 (4) : 535-550. doi: 10.3934/mcrf.2016015


IvÁn Area, FaÏÇal NdaÏrou, Juan J. Nieto, Cristiana J. Silva, Delfim F. M. Torres. Ebola model and optimal control with vaccination constraints. Journal of Industrial & Management Optimization, 2018, 14 (2) : 427-446. doi: 10.3934/jimo.2017054


Qingkai Kong, Zhipeng Qiu, Zi Sang, Yun Zou. Optimal control of a vector-host epidemics model. Mathematical Control & Related Fields, 2011, 1 (4) : 493-508. doi: 10.3934/mcrf.2011.1.493


Erin N. Bodine, Louis J. Gross, Suzanne Lenhart. Optimal control applied to a model for species augmentation. Mathematical Biosciences & Engineering, 2008, 5 (4) : 669-680. doi: 10.3934/mbe.2008.5.669

 Impact Factor: 


  • PDF downloads (84)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]