2007, 2007(Special): 495-505. doi: 10.3934/proc.2007.2007.495

Lie group study of finite difference schemes


Onera, Computational Fluid Dynamics and Aeroacoustics Department (DSNA), BP 72, 20 avenue de la Division Leclerc, 92322 Châtillon Cedex, France


Université Pierre et Marie Curie-Paris 6, Institut Jean Le Rond d'Alembert, UMR CNRS 71900, Boîte courrier $n^0$ 162, 4 place Jussieu, 75252 Paris, cedex 05. France


ONERA, Computational Fluid Dynamics and Aeroacoustics Department (DSNA), BP 72, 20 avenue de la Division Leclerc, 92322 Châtillon Cedex, France

Received  September 2006 Revised  August 2007 Published  September 2007

Differential equations arising in fluid mechanics are usually derived from the intrinsic properties of mechanical systems, in the form of conservation laws, and bear symmetries, which are not generally preserved by a finite difference approximation, and lead to inaccurate numerical results. This paper deals with the analysis of symmetry group of finite difference equations, which is based on the differential approximation. We develop a new scheme, the related differential approximation of which is invariant under the symmetries of the original differential equations. A comparison of numerical performance of this scheme, with standard ones and a higher order one has been realized for the Burgers equation.
Citation: Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093


Ronald E. Mickens. A nonstandard finite difference scheme for the drift-diffusion system. Conference Publications, 2009, 2009 (Special) : 558-563. doi: 10.3934/proc.2009.2009.558


Wei Qu, Siu-Long Lei, Seak-Weng Vong. A note on the stability of a second order finite difference scheme for space fractional diffusion equations. Numerical Algebra, Control and Optimization, 2014, 4 (4) : 317-325. doi: 10.3934/naco.2014.4.317


Hawraa Alsayed, Hussein Fakih, Alain Miranville, Ali Wehbe. Finite difference scheme for 2D parabolic problem modelling electrostatic Micro-Electromechanical Systems. Electronic Research Announcements, 2019, 26: 54-71. doi: 10.3934/era.2019.26.005


Wen Li, Song Wang. Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme. Journal of Industrial and Management Optimization, 2013, 9 (2) : 365-389. doi: 10.3934/jimo.2013.9.365


Tetsuya Ishiwata, Kota Kumazaki. Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field. Conference Publications, 2015, 2015 (special) : 644-651. doi: 10.3934/proc.2015.0644


Navnit Jha. Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization. Conference Publications, 2013, 2013 (special) : 355-363. doi: 10.3934/proc.2013.2013.355


Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2025-2039. doi: 10.3934/dcdss.2020402


Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations and Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017


Francesco C. De Vecchi, Andrea Romano, Stefania Ugolini. A symmetry-adapted numerical scheme for SDEs. Journal of Geometric Mechanics, 2019, 11 (3) : 325-359. doi: 10.3934/jgm.2019018


Changling Xu, Tianliang Hou. Superclose analysis of a two-grid finite element scheme for semilinear parabolic integro-differential equations. Electronic Research Archive, 2020, 28 (2) : 897-910. doi: 10.3934/era.2020047


Chuchu Chen, Jialin Hong, Yulan Lu. Stochastic differential equation with piecewise continuous arguments: Markov property, invariant measure and numerical approximation. Discrete and Continuous Dynamical Systems - B, 2023, 28 (1) : 765-807. doi: 10.3934/dcdsb.2022098


Gabriela Marinoschi. Well posedness of a time-difference scheme for a degenerate fast diffusion problem. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 435-454. doi: 10.3934/dcdsb.2010.13.435


Janosch Rieger. The Euler scheme for state constrained ordinary differential inclusions. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2729-2744. doi: 10.3934/dcdsb.2016070


Alexander Zlotnik. Conditions for $L^2$-dissipativity of an explicit symmetric finite-difference scheme for linearized 2d and 3d gas dynamics equations with a regularization. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022137


Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie. A combined finite volume - finite element scheme for a dispersive shallow water system. Networks and Heterogeneous Media, 2016, 11 (1) : 1-27. doi: 10.3934/nhm.2016.11.1


Gary Froyland, Philip K. Pollett, Robyn M. Stuart. A closing scheme for finding almost-invariant sets in open dynamical systems. Journal of Computational Dynamics, 2014, 1 (1) : 135-162. doi: 10.3934/jcd.2014.1.135


Imed Kacem, Eugene Levner. An improved approximation scheme for scheduling a maintenance and proportional deteriorating jobs. Journal of Industrial and Management Optimization, 2016, 12 (3) : 811-817. doi: 10.3934/jimo.2016.12.811


Azmy S. Ackleh, Kazufumi Ito. An approximation scheme for a nonlinear size-dependent population model. Conference Publications, 1998, 1998 (Special) : 1-6. doi: 10.3934/proc.1998.1998.1


Michele Coti Zelati. Remarks on the approximation of the Navier-Stokes equations via the implicit Euler scheme. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2829-2838. doi: 10.3934/cpaa.2013.12.2829

 Impact Factor: 


  • PDF downloads (42)
  • HTML views (0)
  • Cited by (0)

[Back to Top]