
Previous Article
Asymptotic behavior of solutions to semilinear wave equations with dissipative structure
 PROC Home
 This Issue

Next Article
Nonlinear semigroup methods in problems with hysteresis
Exact boundary controllability of Maxwell's equations with weak conductivity in the heterogeneous medium inside a general domain
1.  MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 024209108, United States 
[1] 
B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems & Imaging, 2009, 3 (3) : 405452. doi: 10.3934/ipi.2009.3.405 
[2] 
Matthias Eller. A remark on Littman's method of boundary controllability. Evolution Equations & Control Theory, 2013, 2 (4) : 621630. doi: 10.3934/eect.2013.2.621 
[3] 
M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete & Continuous Dynamical Systems  S, 2009, 2 (3) : 473481. doi: 10.3934/dcdss.2009.2.473 
[4] 
Matthias Eller. Stability of the anisotropic Maxwell equations with a conductivity term. Evolution Equations & Control Theory, 2019, 8 (2) : 343357. doi: 10.3934/eect.2019018 
[5] 
Cleverson R. da Luz, Gustavo Alberto Perla Menzala. Uniform stabilization of anisotropic Maxwell's equations with boundary dissipation. Discrete & Continuous Dynamical Systems  S, 2009, 2 (3) : 547558. doi: 10.3934/dcdss.2009.2.547 
[6] 
W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 431444. doi: 10.3934/cpaa.2005.4.431 
[7] 
Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete & Continuous Dynamical Systems  B, 2006, 6 (2) : 257272. doi: 10.3934/dcdsb.2006.6.257 
[8] 
Thierry Colin, Boniface Nkonga. Multiscale numerical method for nonlinear Maxwell equations. Discrete & Continuous Dynamical Systems  B, 2005, 5 (3) : 631658. doi: 10.3934/dcdsb.2005.5.631 
[9] 
Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete & Continuous Dynamical Systems  A, 2011, 29 (1) : 305321. doi: 10.3934/dcds.2011.29.305 
[10] 
Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems & Imaging, 2014, 8 (4) : 11171137. doi: 10.3934/ipi.2014.8.1117 
[11] 
Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159179. doi: 10.3934/ipi.2007.1.159 
[12] 
Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of timedomain Maxwell's equations in biperiodic structures. Discrete & Continuous Dynamical Systems  B, 2020, 25 (1) : 259286. doi: 10.3934/dcdsb.2019181 
[13] 
Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 381407. doi: 10.3934/eect.2017020 
[14] 
Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye. A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks & Heterogeneous Media, 2017, 12 (4) : 619642. doi: 10.3934/nhm.2017025 
[15] 
Dirk Pauly. On Maxwell's and Poincaré's constants. Discrete & Continuous Dynamical Systems  S, 2015, 8 (3) : 607618. doi: 10.3934/dcdss.2015.8.607 
[16] 
Panagiota Daskalopoulos, Eunjai Rhee. Freeboundary regularity for generalized porous medium equations. Communications on Pure & Applied Analysis, 2003, 2 (4) : 481494. doi: 10.3934/cpaa.2003.2.481 
[17] 
Kim Dang Phung. Energy decay for Maxwell's equations with Ohm's law in partially cubic domains. Communications on Pure & Applied Analysis, 2013, 12 (5) : 22292266. doi: 10.3934/cpaa.2013.12.2229 
[18] 
Zilai Li, Zhenhua Guo. On free boundary problem for compressible navierstokes equations with temperaturedependent heat conductivity. Discrete & Continuous Dynamical Systems  B, 2017, 22 (10) : 39033919. doi: 10.3934/dcdsb.2017201 
[19] 
Lars Grüne, Peter E. Kloeden, Stefan Siegmund, Fabian R. Wirth. Lyapunov's second method for nonautonomous differential equations. Discrete & Continuous Dynamical Systems  A, 2007, 18 (2&3) : 375403. doi: 10.3934/dcds.2007.18.375 
[20] 
J. J. Morgan, HongMing Yin. On Maxwell's system with a thermal effect. Discrete & Continuous Dynamical Systems  B, 2001, 1 (4) : 485494. doi: 10.3934/dcdsb.2001.1.485 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]