-
Previous Article
Optimal design of an optical length of a rod with the given mass
- PROC Home
- This Issue
-
Next Article
Computation of heteroclinic orbits between normally hyperbolic invariant 3-spheres foliated by 2-dimensional invariant Tori in Hill's problem
New evolution equations for non-linear water waves in general bathymetry with application to steady travelling solutions in constant, but arbitrary, depth
1. | School of Naval Architecture & Marine Engineering, National Technical University of Athens, Heroon Polytechniou 9, Athens 15773, Greece |
2. | School of Technological Applications, Technological Educational Institute of Athens, Greece |
[1] |
Elena Kartashova. Nonlinear resonances of water waves. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607 |
[2] |
David Henry. Energy considerations for nonlinear equatorial water waves. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2337-2356. doi: 10.3934/cpaa.2022057 |
[3] |
R. S. Johnson. A selection of nonlinear problems in water waves, analysed by perturbation-parameter techniques. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1497-1522. doi: 10.3934/cpaa.2012.11.1497 |
[4] |
Dan Endres, Martin Kummer. Nonlinear normal modes for the isosceles DST. Conference Publications, 1998, 1998 (Special) : 231-241. doi: 10.3934/proc.1998.1998.231 |
[5] |
Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103 |
[6] |
Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789 |
[7] |
Calin Iulian Martin. A Hamiltonian approach for nonlinear rotational capillary-gravity water waves in stratified flows. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 387-404. doi: 10.3934/dcds.2017016 |
[8] |
Walter A. Strauss. Vorticity jumps in steady water waves. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1101-1112. doi: 10.3934/dcdsb.2012.17.1101 |
[9] |
Jerry L. Bona, Henrik Kalisch. Models for internal waves in deep water. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 1-20. doi: 10.3934/dcds.2000.6.1 |
[10] |
Vera Mikyoung Hur. On the formation of singularities for surface water waves. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1465-1474. doi: 10.3934/cpaa.2012.11.1465 |
[11] |
Martina Chirilus-Bruckner, Guido Schneider. Interaction of oscillatory packets of water waves. Conference Publications, 2015, 2015 (special) : 267-275. doi: 10.3934/proc.2015.0267 |
[12] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[13] |
Nghiem V. Nguyen, Zhi-Qiang Wang. Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1005-1021. doi: 10.3934/dcds.2016.36.1005 |
[14] |
Vincent Duchêne, Samer Israwi, Raafat Talhouk. Shallow water asymptotic models for the propagation of internal waves. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 239-269. doi: 10.3934/dcdss.2014.7.239 |
[15] |
Anca-Voichita Matioc. On particle trajectories in linear deep-water waves. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1537-1547. doi: 10.3934/cpaa.2012.11.1537 |
[16] |
Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 599-628. doi: 10.3934/dcds.2013.33.599 |
[17] |
Miles H. Wheeler. On stratified water waves with critical layers and Coriolis forces. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4747-4770. doi: 10.3934/dcds.2019193 |
[18] |
Jifeng Chu, Joachim Escher. Steady periodic equatorial water waves with vorticity. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4713-4729. doi: 10.3934/dcds.2019191 |
[19] |
Mats Ehrnström, Gabriele Villari. Recent progress on particle trajectories in steady water waves. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 539-559. doi: 10.3934/dcdsb.2009.12.539 |
[20] |
David M. Ambrose, Jerry L. Bona, David P. Nicholls. Well-posedness of a model for water waves with viscosity. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1113-1137. doi: 10.3934/dcdsb.2012.17.1113 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]