# American Institute of Mathematical Sciences

• Previous Article
Optimal design of an optical length of a rod with the given mass
• PROC Home
• This Issue
• Next Article
Computation of heteroclinic orbits between normally hyperbolic invariant 3-spheres foliated by 2-dimensional invariant Tori in Hill's problem
2007, 2007(Special): 75-84. doi: 10.3934/proc.2007.2007.75

## New evolution equations for non-linear water waves in general bathymetry with application to steady travelling solutions in constant, but arbitrary, depth

 1 School of Naval Architecture & Marine Engineering, National Technical University of Athens, Heroon Polytechniou 9, Athens 15773, Greece 2 School of Technological Applications, Technological Educational Institute of Athens, Greece

Received  September 2006 Revised  February 2007 Published  September 2007

A non-linear coupled-mode system of horizontal equations is derived with the aid of Luke’s [13] variational principle, which models the evolution of nonlinear water waves in intermediate depth and over a general bathymetry. The vertical structure of the wave field is exactly represented by means of a local-mode series expansion of the wave potential. This series contains the usual propagating and evanescent modes, plus two additional modes, the free-surface mode and the sloping-bottom mode, enabling to consistently treat the non-vertical end-conditions at the free-surface and the bottom boundaries. The system fully accounts for the effects of non-linearity and dispersion. The main features of this approach are the following: (i) various standard models of water-wave propagation are recovered by appropriate simplifications of the coupled-mode system, and (ii) a small number of modes (up to 5) are enough for the precise numerical solution, provided that the two new modes (the free-surface and the sloping-bottom ones) are included in the local-mode series. In the present work, the consistent coupled-mode system is applied to the numerical investigation of families of steady travelling wave solutions in constant depth, corresponding to a wide range of water depths, ranging from intermediate to shallow-water wave conditions.
Citation: G. A. Athanassoulis, K. A. Belibassakis. New evolution equations for non-linear water waves in general bathymetry with application to steady travelling solutions in constant, but arbitrary, depth. Conference Publications, 2007, 2007 (Special) : 75-84. doi: 10.3934/proc.2007.2007.75
 [1] Elena Kartashova. Nonlinear resonances of water waves. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607 [2] David Henry. Energy considerations for nonlinear equatorial water waves. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2337-2356. doi: 10.3934/cpaa.2022057 [3] R. S. Johnson. A selection of nonlinear problems in water waves, analysed by perturbation-parameter techniques. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1497-1522. doi: 10.3934/cpaa.2012.11.1497 [4] Dan Endres, Martin Kummer. Nonlinear normal modes for the isosceles DST. Conference Publications, 1998, 1998 (Special) : 231-241. doi: 10.3934/proc.1998.1998.231 [5] Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103 [6] Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789 [7] Calin Iulian Martin. A Hamiltonian approach for nonlinear rotational capillary-gravity water waves in stratified flows. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 387-404. doi: 10.3934/dcds.2017016 [8] Walter A. Strauss. Vorticity jumps in steady water waves. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1101-1112. doi: 10.3934/dcdsb.2012.17.1101 [9] Jerry L. Bona, Henrik Kalisch. Models for internal waves in deep water. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 1-20. doi: 10.3934/dcds.2000.6.1 [10] Vera Mikyoung Hur. On the formation of singularities for surface water waves. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1465-1474. doi: 10.3934/cpaa.2012.11.1465 [11] Martina Chirilus-Bruckner, Guido Schneider. Interaction of oscillatory packets of water waves. Conference Publications, 2015, 2015 (special) : 267-275. doi: 10.3934/proc.2015.0267 [12] Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 [13] Nghiem V. Nguyen, Zhi-Qiang Wang. Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1005-1021. doi: 10.3934/dcds.2016.36.1005 [14] Vincent Duchêne, Samer Israwi, Raafat Talhouk. Shallow water asymptotic models for the propagation of internal waves. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 239-269. doi: 10.3934/dcdss.2014.7.239 [15] Anca-Voichita Matioc. On particle trajectories in linear deep-water waves. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1537-1547. doi: 10.3934/cpaa.2012.11.1537 [16] Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 599-628. doi: 10.3934/dcds.2013.33.599 [17] Miles H. Wheeler. On stratified water waves with critical layers and Coriolis forces. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4747-4770. doi: 10.3934/dcds.2019193 [18] Jifeng Chu, Joachim Escher. Steady periodic equatorial water waves with vorticity. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4713-4729. doi: 10.3934/dcds.2019191 [19] Mats Ehrnström, Gabriele Villari. Recent progress on particle trajectories in steady water waves. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 539-559. doi: 10.3934/dcdsb.2009.12.539 [20] David M. Ambrose, Jerry L. Bona, David P. Nicholls. Well-posedness of a model for water waves with viscosity. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1113-1137. doi: 10.3934/dcdsb.2012.17.1113

Impact Factor: