
Previous Article
Comparison among different notions of solution for the $p$system at a junction
 PROC Home
 This Issue

Next Article
Stability of linear dynamic equations on time scales
The coarsegrain description of interacting sineGordon solitons with varying widths
1.  Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 602083125, United States 
2.  Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 705041010, United States 
[1] 
Christopher K. R. T. Jones, Robert Marangell. The spectrum of travelling wave solutions to the SineGordon equation. Discrete and Continuous Dynamical Systems  S, 2012, 5 (5) : 925937. doi: 10.3934/dcdss.2012.5.925 
[2] 
Goong Chen, Zhonghai Ding, Shujie Li. On positive solutions of the elliptic sineGordon equation. Communications on Pure and Applied Analysis, 2005, 4 (2) : 283294. doi: 10.3934/cpaa.2005.4.283 
[3] 
Qin Sheng, David A. Voss, Q. M. Khaliq. An adaptive splitting algorithm for the sineGordon equation. Conference Publications, 2005, 2005 (Special) : 792797. doi: 10.3934/proc.2005.2005.792 
[4] 
Igor Chueshov, Peter E. Kloeden, Meihua Yang. Synchronization in coupled stochastic sineGordon wave model. Discrete and Continuous Dynamical Systems  B, 2016, 21 (9) : 29692990. doi: 10.3934/dcdsb.2016082 
[5] 
Cornelia Schiebold. Noncommutative AKNS systems and multisoliton solutions to the matrix sinegordon equation. Conference Publications, 2009, 2009 (Special) : 678690. doi: 10.3934/proc.2009.2009.678 
[6] 
CarlFriedrich Kreiner, Johannes Zimmer. Heteroclinic travelling waves for the lattice sineGordon equation with linear pair interaction. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 915931. doi: 10.3934/dcds.2009.25.915 
[7] 
Shuang Yang, Yangrong Li. Forward controllability of a random attractor for the nonautonomous stochastic sineGordon equation on an unbounded domain. Evolution Equations and Control Theory, 2020, 9 (3) : 581604. doi: 10.3934/eect.2020025 
[8] 
Hang Zheng, Yonghui Xia, Manuel Pinto. Chaotic motion and control of the drivendamped Double SineGordon equation. Discrete and Continuous Dynamical Systems  B, 2022 doi: 10.3934/dcdsb.2022037 
[9] 
Sara Cuenda, Niurka R. Quintero, Angel Sánchez. SineGordon wobbles through Bäcklund transformations. Discrete and Continuous Dynamical Systems  S, 2011, 4 (5) : 10471056. doi: 10.3934/dcdss.2011.4.1047 
[10] 
Gennadiy Burlak, Salomon GarcíaParedes. Matterwave solitons with a minimal number of particles in a timemodulated quasiperiodic potential. Conference Publications, 2015, 2015 (special) : 169175. doi: 10.3934/proc.2015.0169 
[11] 
Yangrong Li, Shuang Yang. Backward compact and periodic random attractors for nonautonomous sineGordon equations with multiplicative noise. Communications on Pure and Applied Analysis, 2019, 18 (3) : 11551175. doi: 10.3934/cpaa.2019056 
[12] 
V. V. Chepyzhov, M. I. Vishik, W. L. Wendland. On nonautonomous sineGordon type equations with a simple global attractor and some averaging. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 2738. doi: 10.3934/dcds.2005.12.27 
[13] 
ChiKun Lin, KungChien Wu. On the fluid dynamical approximation to the nonlinear KleinGordon equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 22332251. doi: 10.3934/dcds.2012.32.2233 
[14] 
Yanling Shi, Junxiang Xu. Quasiperiodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete and Continuous Dynamical Systems  B, 2021, 26 (7) : 34793490. doi: 10.3934/dcdsb.2020241 
[15] 
Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems  B, 2014, 19 (8) : 26032616. doi: 10.3934/dcdsb.2014.19.2603 
[16] 
Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 10631079. doi: 10.3934/cpaa.2012.11.1063 
[17] 
Yusuke Murase, Atsushi Kadoya, Nobuyuki Kenmochi. Optimal control problems for quasivariational inequalities and its numerical approximation. Conference Publications, 2011, 2011 (Special) : 11011110. doi: 10.3934/proc.2011.2011.1101 
[18] 
Gong Chen, Peter J. Olver. Numerical simulation of nonlinear dispersive quantization. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 9911008. doi: 10.3934/dcds.2014.34.991 
[19] 
Walid K. Abou Salem, Xiao Liu, Catherine Sulem. Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 16371649. doi: 10.3934/dcds.2011.29.1637 
[20] 
Christopher Chong, Dmitry Pelinovsky. Variational approximations of bifurcations of asymmetric solitons in cubicquintic nonlinear Schrödinger lattices. Discrete and Continuous Dynamical Systems  S, 2011, 4 (5) : 10191031. doi: 10.3934/dcdss.2011.4.1019 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]