-
Previous Article
Time-dependent obstacle problem in thermohydraulics
- PROC Home
- This Issue
-
Next Article
Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods
Parameter identification and quantitative comparison of differential equations that describe physiological adaptation of a bacterial population under iron limitation
1. | Dept. Mathematics and Statistics, University of Guelph, Guelph, On, Canada, N1G 2W1, Canada |
2. | Department of Mathematics and Statistics, University of Guelph, Guelph, On, N1G 2W1, Canada |
[1] |
Edward J. Allen. Derivation and computation of discrete-delay and continuous-delay SDEs in mathematical biology. Mathematical Biosciences & Engineering, 2014, 11 (3) : 403-425. doi: 10.3934/mbe.2014.11.403 |
[2] |
Qinqin Chai, Ryan Loxton, Kok Lay Teo, Chunhua Yang. A unified parameter identification method for nonlinear time-delay systems. Journal of Industrial and Management Optimization, 2013, 9 (2) : 471-486. doi: 10.3934/jimo.2013.9.471 |
[3] |
Avner Friedman. Conservation laws in mathematical biology. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081 |
[4] |
Eugene Kashdan, Dominique Duncan, Andrew Parnell, Heinz Schättler. Mathematical methods in systems biology. Mathematical Biosciences & Engineering, 2016, 13 (6) : i-ii. doi: 10.3934/mbe.201606i |
[5] |
Avner Friedman. PDE problems arising in mathematical biology. Networks and Heterogeneous Media, 2012, 7 (4) : 691-703. doi: 10.3934/nhm.2012.7.691 |
[6] |
Antonio Magaña, Alain Miranville, Ramón Quintanilla. On the time decay in phase–lag thermoelasticity with two temperatures. Electronic Research Archive, 2019, 27: 7-19. doi: 10.3934/era.2019007 |
[7] |
Monique Chyba, Benedetto Piccoli. Special issue on mathematical methods in systems biology. Networks and Heterogeneous Media, 2019, 14 (1) : i-ii. doi: 10.3934/nhm.20191i |
[8] |
Pingping Niu, Shuai Lu, Jin Cheng. On periodic parameter identification in stochastic differential equations. Inverse Problems and Imaging, 2019, 13 (3) : 513-543. doi: 10.3934/ipi.2019025 |
[9] |
Yuepeng Wang, Yue Cheng, I. Michael Navon, Yuanhong Guan. Parameter identification techniques applied to an environmental pollution model. Journal of Industrial and Management Optimization, 2018, 14 (2) : 817-831. doi: 10.3934/jimo.2017077 |
[10] |
Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5661-5679. doi: 10.3934/dcdsb.2020375 |
[11] |
Zhuangyi Liu, Ramón Quintanilla. Time decay in dual-phase-lag thermoelasticity: Critical case. Communications on Pure and Applied Analysis, 2018, 17 (1) : 177-190. doi: 10.3934/cpaa.2018011 |
[12] |
Lesia V. Baranovska. Pursuit differential-difference games with pure time-lag. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1021-1031. doi: 10.3934/dcdsb.2019004 |
[13] |
Erika T. Camacho, Christopher M. Kribs-Zaleta, Stephen Wirkus. The mathematical and theoretical biology institute - a model of mentorship through research. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1351-1363. doi: 10.3934/mbe.2013.10.1351 |
[14] |
Barbara Kaltenbacher, William Rundell. On the identification of the nonlinearity parameter in the Westervelt equation from boundary measurements. Inverse Problems and Imaging, 2021, 15 (5) : 865-891. doi: 10.3934/ipi.2021020 |
[15] |
Thorsten Hüls. Numerical computation of dichotomy rates and projectors in discrete time. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 109-131. doi: 10.3934/dcdsb.2009.12.109 |
[16] |
Riane Hajjami, Mustapha El Jarroudi, Aadil Lahrouz, Adel Settati, Mohamed EL Fatini, Kai Wang. Dynamic analysis of an $ SEIR $ epidemic model with a time lag in awareness allocated funds. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4191-4225. doi: 10.3934/dcdsb.2020285 |
[17] |
Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Glenn W.A. Rowe. Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology. Mathematical Biosciences & Engineering, 2006, 3 (4) : 571-582. doi: 10.3934/mbe.2006.3.571 |
[18] |
John D. Nagy. The Ecology and Evolutionary Biology of Cancer: A Review of Mathematical Models of Necrosis and Tumor Cell Diversity. Mathematical Biosciences & Engineering, 2005, 2 (2) : 381-418. doi: 10.3934/mbe.2005.2.381 |
[19] |
Lei Wang, Jinlong Yuan, Yingfang Li, Enmin Feng, Zhilong Xiu. Parameter identification of nonlinear delayed dynamical system in microbial fermentation based on biological robustness. Numerical Algebra, Control and Optimization, 2014, 4 (2) : 103-113. doi: 10.3934/naco.2014.4.103 |
[20] |
Qinxi Bai, Zhijun Li, Lei Wang, Bing Tan, Enmin Feng. Parameter identification and numerical simulation for the exchange coefficient of dissolved oxygen concentration under ice in a boreal lake. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1463-1478. doi: 10.3934/jimo.2018016 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]