
Previous Article
Hierarchical differential games between manufacturer and retailer
 PROC Home
 This Issue

Next Article
Positive solutions of a nonlinear higher order boundaryvalue problem
An improved optimistic threestage model for the spread of HIV amongst injecting intravenous drug users
1.  Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, United Kingdom, United Kingdom 
[1] 
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595607. doi: 10.3934/mbe.2007.4.595 
[2] 
C. Connell McCluskey. Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences & Engineering, 2009, 6 (3) : 603610. doi: 10.3934/mbe.2009.6.603 
[3] 
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems  B, 2013, 18 (1) : 3756. doi: 10.3934/dcdsb.2013.18.37 
[4] 
Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete & Continuous Dynamical Systems  S, 2013, 6 (2) : 461478. doi: 10.3934/dcdss.2013.6.461 
[5] 
Anatoly Neishtadt. On stability loss delay for dynamical bifurcations. Discrete & Continuous Dynamical Systems  S, 2009, 2 (4) : 897909. doi: 10.3934/dcdss.2009.2.897 
[6] 
Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 14551474. doi: 10.3934/mbe.2013.10.1455 
[7] 
Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. Stability analysis of inhomogeneous equilibrium for axially and transversely excited nonlinear beam. Communications on Pure & Applied Analysis, 2011, 10 (5) : 14471462. doi: 10.3934/cpaa.2011.10.1447 
[8] 
SzeBi Hsu, MingChia Li, Weishi Liu, Mikhail Malkin. Heteroclinic foliation, global oscillations for the NicholsonBailey model and delay of stability loss. Discrete & Continuous Dynamical Systems  A, 2003, 9 (6) : 14651492. doi: 10.3934/dcds.2003.9.1465 
[9] 
Arni S. R. Srinivasa Rao, Kurien Thomas, Kurapati Sudhakar, Philip K. Maini. HIV/AIDS epidemic in India and predicting the impact of the national response: Mathematical modeling and analysis. Mathematical Biosciences & Engineering, 2009, 6 (4) : 779813. doi: 10.3934/mbe.2009.6.779 
[10] 
Praveen Kumar Gupta, Ajoy Dutta. Numerical solution with analysis of HIV/AIDS dynamics model with effect of fusion and cure rate. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 00. doi: 10.3934/naco.2019038 
[11] 
ClaudeMichel Brauner, Xinyue Fan, Luca Lorenzi. Twodimensional stability analysis in a HIV model with quadratic logistic growth term. Communications on Pure & Applied Analysis, 2013, 12 (5) : 18131844. doi: 10.3934/cpaa.2013.12.1813 
[12] 
Jinliang Wang, Lijuan Guan. Global stability for a HIV1 infection model with cellmediated immune response and intracellular delay. Discrete & Continuous Dynamical Systems  B, 2012, 17 (1) : 297302. doi: 10.3934/dcdsb.2012.17.297 
[13] 
Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525536. doi: 10.3934/mbe.2015.12.525 
[14] 
Shengqiang Liu, Lin Wang. Global stability of an HIV1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences & Engineering, 2010, 7 (3) : 675685. doi: 10.3934/mbe.2010.7.675 
[15] 
Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure & Applied Analysis, 2006, 5 (3) : 515528. doi: 10.3934/cpaa.2006.5.515 
[16] 
Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure & Applied Analysis, 2007, 6 (1) : 6982. doi: 10.3934/cpaa.2007.6.69 
[17] 
Napoleon Bame, Samuel Bowong, Josepha Mbang, Gauthier Sallet, JeanJules Tewa. Global stability analysis for SEIS models with n latent classes. Mathematical Biosciences & Engineering, 2008, 5 (1) : 2033. doi: 10.3934/mbe.2008.5.20 
[18] 
Marc Briant. Stability of global equilibrium for the multispecies Boltzmann equation in $L^\infty$ settings. Discrete & Continuous Dynamical Systems  A, 2016, 36 (12) : 66696688. doi: 10.3934/dcds.2016090 
[19] 
Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete & Continuous Dynamical Systems  B, 2019, 24 (12) : 67716782. doi: 10.3934/dcdsb.2019166 
[20] 
Anna Ghazaryan, Christopher K. R. T. Jones. On the stability of high Lewis number combustion fronts. Discrete & Continuous Dynamical Systems  A, 2009, 24 (3) : 809826. doi: 10.3934/dcds.2009.24.809 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]