
Previous Article
Accurate parameter estimation for coupled stochastic dynamics
 PROC Home
 This Issue

Next Article
Characterizing the existence of coexistence states in a class of cooperative systems
Dynamically consistent nonstandard finite difference schemes for continuous dynamical systems
1.  Department of Mathematics and Applied Mathematics, University of Pretoria, South Africa, South Africa 
2.  Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309 
[1] 
Ronald E. Mickens. A nonstandard finite difference scheme for the driftdiffusion system. Conference Publications, 2009, 2009 (Special) : 558563. doi: 10.3934/proc.2009.2009.558 
[2] 
LihIng W. Roeger. Dynamically consistent discrete LotkaVolterra competition models derived from nonstandard finitedifference schemes. Discrete & Continuous Dynamical Systems  B, 2008, 9 (2) : 415429. doi: 10.3934/dcdsb.2008.9.415 
[3] 
Junxiang Li, Yan Gao, Tao Dai, Chunming Ye, Qiang Su, Jiazhen Huo. Substitution secant/finite difference method to large sparse minimax problems. Journal of Industrial & Management Optimization, 2014, 10 (2) : 637663. doi: 10.3934/jimo.2014.10.637 
[4] 
Igor E. Shparlinski. On some dynamical systems in finite fields and residue rings. Discrete & Continuous Dynamical Systems  A, 2007, 17 (4) : 901917. doi: 10.3934/dcds.2007.17.901 
[5] 
Liejune Shiau, Roland Glowinski. Operator splitting method for friction constrained dynamical systems. Conference Publications, 2005, 2005 (Special) : 806815. doi: 10.3934/proc.2005.2005.806 
[6] 
Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a timefractional diffusionconvection equation for image restoration. Discrete & Continuous Dynamical Systems  S, 2018, 11 (1) : 103117. doi: 10.3934/dcdss.2018007 
[7] 
Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020402 
[8] 
Ömer Oruç, Alaattin Esen, Fatih Bulut. A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers' equation. Discrete & Continuous Dynamical Systems  S, 2019, 12 (3) : 533542. doi: 10.3934/dcdss.2019035 
[9] 
Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the KleinGordonSchrödinger system in the nonrelativistic and massless limit regimes. Kinetic & Related Models, 2018, 11 (4) : 10371062. doi: 10.3934/krm.2018040 
[10] 
Wen Chen, Song Wang. A finite difference method for pricing European and American options under a geometric Lévy process. Journal of Industrial & Management Optimization, 2015, 11 (1) : 241264. doi: 10.3934/jimo.2015.11.241 
[11] 
Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structurepreserving finite difference schemes for the CahnHilliard equation with dynamic boundary conditions in the onedimensional case. Communications on Pure & Applied Analysis, 2017, 16 (5) : 19151938. doi: 10.3934/cpaa.2017093 
[12] 
Jianjun Paul Tian. Finitetime perturbations of dynamical systems and applications to tumor therapy. Discrete & Continuous Dynamical Systems  B, 2009, 12 (2) : 469479. doi: 10.3934/dcdsb.2009.12.469 
[13] 
Xavier Cabré, Amadeu Delshams, Marian Gidea, Chongchun Zeng. Preface of Llavefest: A broad perspective on finite and infinite dimensional dynamical systems. Discrete & Continuous Dynamical Systems  A, 2018, 38 (12) : ⅰⅲ. doi: 10.3934/dcds.201812i 
[14] 
María J. GarridoAtienza, Oleksiy V. Kapustyan, José Valero. Preface to the special issue "Finite and infinite dimensional multivalued dynamical systems". Discrete & Continuous Dynamical Systems  B, 2017, 22 (5) : ⅰⅳ. doi: 10.3934/dcdsb.201705i 
[15] 
Felix X.F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete & Continuous Dynamical Systems  B, 2019, 24 (8) : 43414366. doi: 10.3934/dcdsb.2019122 
[16] 
Hawraa Alsayed, Hussein Fakih, Alain Miranville, Ali Wehbe. Finite difference scheme for 2D parabolic problem modelling electrostatic MicroElectromechanical Systems. Electronic Research Announcements, 2019, 26: 5471. doi: 10.3934/era.2019.26.005 
[17] 
Claire david@lmm.jussieu.fr David, Pierre Sagaut. Theoretical optimization of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 286293. doi: 10.3934/proc.2007.2007.286 
[18] 
Pavlos Xanthopoulos, Georgios E. Zouraris. A linearly implicit finite difference method for a KleinGordonSchrödinger system modeling electronion plasma waves. Discrete & Continuous Dynamical Systems  B, 2008, 10 (1) : 239263. doi: 10.3934/dcdsb.2008.10.239 
[19] 
Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blowup for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91102. doi: 10.3934/era.2020006 
[20] 
Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, ThiênHiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495505. doi: 10.3934/proc.2007.2007.495 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]