
Previous Article
Generalized solutions of a nonisothermal phase separation model
 PROC Home
 This Issue

Next Article
Existence of nodal solutions of multipoint boundary value problems
State estimation for linear impulsive differential systems through polyhedral techniques
1.  Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16, S.Kovalevskaja Street, Ekaterinburg GSP384, 620219, Russian Federation 
[1] 
Robert Baier, Thuy T. T. Le. Construction of the minimum time function for linear systems via higherorder setvalued methods. Mathematical Control & Related Fields, 2019, 9 (2) : 223255. doi: 10.3934/mcrf.2019012 
[2] 
Roberta Fabbri, Sylvia Novo, Carmen Núñez, Rafael Obaya. Null controllable sets and reachable sets for nonautonomous linear control systems. Discrete & Continuous Dynamical Systems  S, 2016, 9 (4) : 10691094. doi: 10.3934/dcdss.2016042 
[3] 
Elena K. Kostousova. On polyhedral estimates for trajectory tubes of dynamical discretetime systems with multiplicative uncertainty. Conference Publications, 2011, 2011 (Special) : 864873. doi: 10.3934/proc.2011.2011.864 
[4] 
Elena K. Kostousova. On polyhedral control synthesis for dynamical discretetime systems under uncertainties and state constraints. Discrete & Continuous Dynamical Systems  A, 2018, 38 (12) : 61496162. doi: 10.3934/dcds.2018153 
[5] 
Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order HamiltonJacobiBellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems  A, 2015, 35 (9) : 39333964. doi: 10.3934/dcds.2015.35.3933 
[6] 
Shay Kels, Nira Dyn. Bernsteintype approximation of setvalued functions in the symmetric difference metric. Discrete & Continuous Dynamical Systems  A, 2014, 34 (3) : 10411060. doi: 10.3934/dcds.2014.34.1041 
[7] 
Zhiang Zhou, Xinmin Yang, Kequan Zhao. $E$super efficiency of setvalued optimization problems involving improvement sets. Journal of Industrial & Management Optimization, 2016, 12 (3) : 10311039. doi: 10.3934/jimo.2016.12.1031 
[8] 
Robert Baier, Matthias Gerdts, Ilaria Xausa. Approximation of reachable sets using optimal control algorithms. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 519548. doi: 10.3934/naco.2013.3.519 
[9] 
Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in setvalued dynamics. Discrete & Continuous Dynamical Systems  B, 2017, 22 (5) : 19651975. doi: 10.3934/dcdsb.2017115 
[10] 
Dante CarrascoOlivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for setvalued maps. Discrete & Continuous Dynamical Systems  B, 2015, 20 (10) : 34613474. doi: 10.3934/dcdsb.2015.20.3461 
[11] 
GengHua Li, ShengJie Li. Unified optimality conditions for setvalued optimizations. Journal of Industrial & Management Optimization, 2019, 15 (3) : 11011116. doi: 10.3934/jimo.2018087 
[12] 
Dietmar Szolnoki. Set oriented methods for computing reachable sets and control sets. Discrete & Continuous Dynamical Systems  B, 2003, 3 (3) : 361382. doi: 10.3934/dcdsb.2003.3.361 
[13] 
Baskar Sundaravadivoo. Controllability analysis of nonlinear fractional order differential systems with state delay and noninstantaneous impulsive effects. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 00. doi: 10.3934/dcdss.2020138 
[14] 
Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Approximation of attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems  B, 2005, 5 (2) : 215238. doi: 10.3934/dcdsb.2005.5.215 
[15] 
Yu Zhang, Tao Chen. Minimax problems for setvalued mappings with set optimization. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 327340. doi: 10.3934/naco.2014.4.327 
[16] 
Qingbang Zhang, Caozong Cheng, Xuanxuan Li. Generalized minimax theorems for two setvalued mappings. Journal of Industrial & Management Optimization, 2013, 9 (1) : 112. doi: 10.3934/jimo.2013.9.1 
[17] 
Sina Greenwood, Rolf Suabedissen. 2manifolds and inverse limits of setvalued functions on intervals. Discrete & Continuous Dynamical Systems  A, 2017, 37 (11) : 56935706. doi: 10.3934/dcds.2017246 
[18] 
Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in setvalued optimization under strictly minimal efficiency. Evolution Equations & Control Theory, 2017, 6 (3) : 427436. doi: 10.3934/eect.2017022 
[19] 
Mariusz Michta. Stochastic inclusions with noncontinuous setvalued operators. Conference Publications, 2009, 2009 (Special) : 548557. doi: 10.3934/proc.2009.2009.548 
[20] 
Guolin Yu. Topological properties of Henig globally efficient solutions of setvalued problems. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 309316. doi: 10.3934/naco.2014.4.309 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]