• Previous Article
    On a solution with transition layers for a bistable reaction-diffusion equation with spatially heterogeneous environments
  • PROC Home
  • This Issue
  • Next Article
    A robust finite element method for singularly perturbed convection-diffusion problems
2009, 2009(Special): 506-515. doi: 10.3934/proc.2009.2009.506

Wronskian solutions to integrable equations

1. 

Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, United States

Received  July 2008 Revised  March 2009 Published  September 2009

Wronskian determinants are used to construct exact solution to integrable equations. The crucial steps are to apply Hirota's bilinear forms and explore linear conditions to guarantee the Plücker relations. Upon solving the linear conditions, the resulting Wronskian formulations bring solution formulas, which can yield solitons, negatons, positions and complexitons. The solution process is illustrated by the Korteweg-de Vries equation and applied to the Boussinesq equation.
Citation: Wen-Xiu Ma. Wronskian solutions to integrable equations. Conference Publications, 2009, 2009 (Special) : 506-515. doi: 10.3934/proc.2009.2009.506
[1]

Yuan Li, Shou-Fu Tian. Inverse scattering transform and soliton solutions of an integrable nonlocal Hirota equation. Communications on Pure and Applied Analysis, 2022, 21 (1) : 293-313. doi: 10.3934/cpaa.2021178

[2]

Jerry L. Bona, Didier Pilod. Stability of solitary-wave solutions to the Hirota-Satsuma equation. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1391-1413. doi: 10.3934/dcds.2010.27.1391

[3]

Yufeng Zhang, Wen-Xiu Ma, Jin-Yun Yang. A study on lump solutions to a (2+1)-dimensional completely generalized Hirota-Satsuma-Ito equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2941-2948. doi: 10.3934/dcdss.2020167

[4]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[5]

Benjamin Dodson, Cristian Gavrus. Instability of the soliton for the focusing, mass-critical generalized KdV equation. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1767-1799. doi: 10.3934/dcds.2021171

[6]

Felipe Hernandez. A decomposition for the Schrödinger equation with applications to bilinear and multilinear estimates. Communications on Pure and Applied Analysis, 2018, 17 (2) : 627-646. doi: 10.3934/cpaa.2018034

[7]

Piermarco Cannarsa, Alessandro Duca, Cristina Urbani. Exact controllability to eigensolutions of the bilinear heat equation on compact networks. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1377-1401. doi: 10.3934/dcdss.2022011

[8]

Jitendra Kumar, Gurmeet Kaur, Evangelos Tsotsas. An accurate and efficient discrete formulation of aggregation population balance equation. Kinetic and Related Models, 2016, 9 (2) : 373-391. doi: 10.3934/krm.2016.9.373

[9]

Thomas Y. Hou, Danping Yang, Hongyu Ran. Multiscale analysis in Lagrangian formulation for the 2-D incompressible Euler equation. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1153-1186. doi: 10.3934/dcds.2005.13.1153

[10]

Weipeng Hu, Zichen Deng, Yuyue Qin. Multi-symplectic method to simulate Soliton resonance of (2+1)-dimensional Boussinesq equation. Journal of Geometric Mechanics, 2013, 5 (3) : 295-318. doi: 10.3934/jgm.2013.5.295

[11]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[12]

John P. Albert. A uniqueness result for 2-soliton solutions of the Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3635-3670. doi: 10.3934/dcds.2019149

[13]

David Mumford, Peter W. Michor. On Euler's equation and 'EPDiff'. Journal of Geometric Mechanics, 2013, 5 (3) : 319-344. doi: 10.3934/jgm.2013.5.319

[14]

Marcus A. Khuri. On the local solvability of Darboux's equation. Conference Publications, 2009, 2009 (Special) : 451-456. doi: 10.3934/proc.2009.2009.451

[15]

Justin Holmer, Maciej Zworski. Slow soliton interaction with delta impurities. Journal of Modern Dynamics, 2007, 1 (4) : 689-718. doi: 10.3934/jmd.2007.1.689

[16]

Kevin Zumbrun. L resolvent bounds for steady Boltzmann's Equation. Kinetic and Related Models, 2017, 10 (4) : 1255-1257. doi: 10.3934/krm.2017048

[17]

Wafa Hamrouni, Ali Abdennadher. Random walk's models for fractional diffusion equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2509-2530. doi: 10.3934/dcdsb.2016058

[18]

Szandra Beretka, Gabriella Vas. Stable periodic solutions for Nazarenko's equation. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3257-3281. doi: 10.3934/cpaa.2020144

[19]

Darya V. Verveyko, Andrey Yu. Verisokin. Application of He's method to the modified Rayleigh equation. Conference Publications, 2011, 2011 (Special) : 1423-1431. doi: 10.3934/proc.2011.2011.1423

[20]

J. Leonel Rocha, Sandra M. Aleixo. Dynamical analysis in growth models: Blumberg's equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 783-795. doi: 10.3934/dcdsb.2013.18.783

 Impact Factor: 

Metrics

  • PDF downloads (183)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]