• Previous Article
    Equivalence between observability and stabilization for a class of second order semilinear evolution
  • PROC Home
  • This Issue
  • Next Article
    Effective estimates of the higher Sobolev norms for the Kuramoto-Sivashinsky equation
2009, 2009(Special): 739-743. doi: 10.3934/proc.2009.2009.739

New comparison principle with Razumikhin condition for impulsive infinite delay differential systems

1. 

School of Mathematical Science, Shandong Normal University, Jinan, Shandong 250014, P.R., China

Received  July 2008 Revised  July 2009 Published  September 2009

In this paper, we will develop a comparison principle with Razumikhin condition relative to stability theory of impulsive functional differential system with infinite delay in terms of two different measures.
Citation: Xiaowei Tang, Xilin Fu. New comparison principle with Razumikhin condition for impulsive infinite delay differential systems. Conference Publications, 2009, 2009 (Special) : 739-743. doi: 10.3934/proc.2009.2009.739
[1]

Fuke Wu, Xuerong Mao, Peter E. Kloeden. Discrete Razumikhin-type technique and stability of the Euler--Maruyama method to stochastic functional differential equations. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 885-903. doi: 10.3934/dcds.2013.33.885

[2]

Fuke Wu, George Yin, Le Yi Wang. Razumikhin-type theorems on moment exponential stability of functional differential equations involving two-time-scale Markovian switching. Mathematical Control and Related Fields, 2015, 5 (3) : 697-719. doi: 10.3934/mcrf.2015.5.697

[3]

Marat Akhmet, Duygu Aruğaslan. Lyapunov-Razumikhin method for differential equations with piecewise constant argument. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 457-466. doi: 10.3934/dcds.2009.25.457

[4]

Muslim Malik, Anjali Rose, Anil Kumar. Controllability of Sobolev type fuzzy differential equation with non-instantaneous impulsive condition. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 387-407. doi: 10.3934/dcdss.2021068

[5]

Zuowei Cai, Jianhua Huang, Lihong Huang. Generalized Lyapunov-Razumikhin method for retarded differential inclusions: Applications to discontinuous neural networks. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3591-3614. doi: 10.3934/dcdsb.2017181

[6]

F. M. G. Magpantay, A. R. Humphries. Generalised Lyapunov-Razumikhin techniques for scalar state-dependent delay differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (1) : 85-104. doi: 10.3934/dcdss.2020005

[7]

Sibel Senan, Eylem Yucel, Zeynep Orman, Ruya Samli, Sabri Arik. A Novel Lyapunov functional with application to stability analysis of neutral systems with nonlinear disturbances. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1415-1428. doi: 10.3934/dcdss.2020358

[8]

Robert Baier, Lars Grüne, Sigurđur Freyr Hafstein. Linear programming based Lyapunov function computation for differential inclusions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 33-56. doi: 10.3934/dcdsb.2012.17.33

[9]

Volodymyr Pichkur. On practical stability of differential inclusions using Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1977-1986. doi: 10.3934/dcdsb.2017116

[10]

Vitalii G. Kurbatov, Valentina I. Kuznetsova. On stability of functional differential equations with rapidly oscillating coefficients. Communications on Pure and Applied Analysis, 2018, 17 (1) : 267-283. doi: 10.3934/cpaa.2018016

[11]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[12]

Chun-Gil Park. Stability of a linear functional equation in Banach modules. Conference Publications, 2003, 2003 (Special) : 694-700. doi: 10.3934/proc.2003.2003.694

[13]

Jehad O. Alzabut. A necessary and sufficient condition for the existence of periodic solutions of linear impulsive differential equations with distributed delay. Conference Publications, 2007, 2007 (Special) : 35-43. doi: 10.3934/proc.2007.2007.35

[14]

Yunfei Peng, X. Xiang. A class of nonlinear impulsive differential equation and optimal controls on time scales. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1137-1155. doi: 10.3934/dcdsb.2011.16.1137

[15]

Ferenc Hartung, Janos Turi. Linearized stability in functional differential equations with state-dependent delays. Conference Publications, 2001, 2001 (Special) : 416-425. doi: 10.3934/proc.2001.2001.416

[16]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[17]

Sigurdur Hafstein, Skuli Gudmundsson, Peter Giesl, Enrico Scalas. Lyapunov function computation for autonomous linear stochastic differential equations using sum-of-squares programming. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 939-956. doi: 10.3934/dcdsb.2018049

[18]

Samuel Bernard, Fabien Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1855-1876. doi: 10.3934/dcdsb.2015.20.1855

[19]

Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099

[20]

Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321

 Impact Factor: 

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]