2009, 2009(Special): 790-799. doi: 10.3934/proc.2009.2009.790

A hyperbolic relaxation model for product flow in complex production networks

1. 

Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287-1804, United States, United States, United States

Received  July 2008 Revised  June 2009 Published  September 2009

This paper presents a continuum - traffic flow like - model for the flow of products through complex production networks, based on statistical information obtained from extensive observations of the system. The resulting model consists of a system of hyperbolic conservation laws, which, in a relaxation limit, exhibit the correct diffusive properties given by the variance of the observed data.
Citation: Ali Unver, Christian Ringhofer, Dieter Armbruster. A hyperbolic relaxation model for product flow in complex production networks. Conference Publications, 2009, 2009 (Special) : 790-799. doi: 10.3934/proc.2009.2009.790
[1]

Ciro D'Apice, Peter I. Kogut, Rosanna Manzo. On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks and Heterogeneous Media, 2014, 9 (3) : 501-518. doi: 10.3934/nhm.2014.9.501

[2]

Ciro D'Apice, Rosanna Manzo. A fluid dynamic model for supply chains. Networks and Heterogeneous Media, 2006, 1 (3) : 379-398. doi: 10.3934/nhm.2006.1.379

[3]

Xiaoli Yan, Hui Yu. Channel structures of transnational supply chains. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022131

[4]

Constantine M. Dafermos. Hyperbolic balance laws with relaxation. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4271-4285. doi: 10.3934/dcds.2016.36.4271

[5]

Gabriella Bretti, Ciro D’Apice, Rosanna Manzo, Benedetto Piccoli. A continuum-discrete model for supply chains dynamics. Networks and Heterogeneous Media, 2007, 2 (4) : 661-694. doi: 10.3934/nhm.2007.2.661

[6]

Manil T. Mohan, Sivaguru S. Sritharan. New methods for local solvability of quasilinear symmetric hyperbolic systems. Evolution Equations and Control Theory, 2016, 5 (2) : 273-302. doi: 10.3934/eect.2016005

[7]

K. F. C. Yiu, L. L. Xie, K. L. Mak. Analysis of bullwhip effect in supply chains with heterogeneous decision models. Journal of Industrial and Management Optimization, 2009, 5 (1) : 81-94. doi: 10.3934/jimo.2009.5.81

[8]

Jing Shi, Tiaojun Xiao. Store assistance and coordination of supply chains facing consumer's return. Journal of Industrial and Management Optimization, 2016, 12 (3) : 991-1007. doi: 10.3934/jimo.2016.12.991

[9]

Tsan-Ming Choi. Quick response in fashion supply chains with dual information updating. Journal of Industrial and Management Optimization, 2006, 2 (3) : 255-268. doi: 10.3934/jimo.2006.2.255

[10]

Juliang Zhang, Jian Chen. Externality of contracts on supply chains with two suppliers and a common retailer. Journal of Industrial and Management Optimization, 2010, 6 (4) : 795-810. doi: 10.3934/jimo.2010.6.795

[11]

Masha Shunko, Srinagesh Gavirneni. Role of transfer prices in global supply chains with random demands. Journal of Industrial and Management Optimization, 2007, 3 (1) : 99-117. doi: 10.3934/jimo.2007.3.99

[12]

Wucheng Zi, Jiayu Zhou, Honglei Xu, Guodong Li, Gang Lin. Preserving relational contract stability of fresh agricultural product supply chains. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2505-2518. doi: 10.3934/jimo.2020079

[13]

Tinghai Ren, Nengmin Zeng, Dafei Wang, Shuwei Cheng. Effects of channel encroachment on the software and service decisions in it supply chains. Journal of Industrial and Management Optimization, 2022, 18 (5) : 3787-3806. doi: 10.3934/jimo.2021136

[14]

Vladimir V. Chepyzhov, Anna Kostianko, Sergey Zelik. Inertial manifolds for the hyperbolic relaxation of semilinear parabolic equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1115-1142. doi: 10.3934/dcdsb.2019009

[15]

Manas Bhatnagar, Hailiang Liu. Sharp critical thresholds in a hyperbolic system with relaxation. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5851-5869. doi: 10.3934/dcds.2021098

[16]

Nicolai Sætran, Antonella Zanna. Chains of rigid bodies and their numerical simulation by local frame methods. Journal of Computational Dynamics, 2019, 6 (2) : 409-427. doi: 10.3934/jcd.2019021

[17]

Bernard Bonnard, Thierry Combot, Lionel Jassionnesse. Integrability methods in the time minimal coherence transfer for Ising chains of three spins. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4095-4114. doi: 10.3934/dcds.2015.35.4095

[18]

Wen-Qing Xu. Boundary conditions for multi-dimensional hyperbolic relaxation problems. Conference Publications, 2003, 2003 (Special) : 916-925. doi: 10.3934/proc.2003.2003.916

[19]

Jean-François Babadjian, Clément Mifsud, Nicolas Seguin. Relaxation approximation of Friedrichs' systems under convex constraints. Networks and Heterogeneous Media, 2016, 11 (2) : 223-237. doi: 10.3934/nhm.2016.11.223

[20]

K. F. Cedric Yiu, S. Y. Wang, K. L. Mak. Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains. Journal of Industrial and Management Optimization, 2008, 4 (1) : 81-94. doi: 10.3934/jimo.2008.4.81

 Impact Factor: 

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (0)

[Back to Top]