2011, 2011(Special): 1032-1041. doi: 10.3934/proc.2011.2011.1032

Firing map of an almost periodic input function


Faculty of Mathematics and Comp. Sci., Adam Mickiewicz University of Poznań, ul. Umultowska 87, 61-614 Poznań


Institute of Mathematics of the Polish Academy of Sciences, ul. Śniadeckich 8, 00-956 Warszawa, Poland

Received  July 2010 Revised  February 2011 Published  October 2011

In mathematical biology and the theory of electric networks the fi ring map of an integrate-and-fi re system is a notion of importance. In order to prove useful properties of this map authors of previous papers assumed that the stimulus function $f$ of the system $ẋ$ = $f(t, x)$ is continuous and usually periodic in the time variable. In this work we show that the required properties of the firing map for the simplifi ed model $ẋ$ = $f(t)$ still hold if $f \in L(^1_(loc))(R)$ and $f$ is an almost periodic function. Moreover, in this way we prepare a formal framework for next study of a discrete dynamics of the firing map arising from almost periodic stimulus that gives information on consecutive resets (spikes).
Citation: Wacław Marzantowicz, Justyna Signerska. Firing map of an almost periodic input function. Conference Publications, 2011, 2011 (Special) : 1032-1041. doi: 10.3934/proc.2011.2011.1032

Marko Kostić. Almost periodic type functions and densities. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021008


Michele Barbi, Angelo Di Garbo, Rita Balocchi. Improved integrate-and-fire model for RSA. Mathematical Biosciences & Engineering, 2007, 4 (4) : 609-615. doi: 10.3934/mbe.2007.4.609


Chang-Yuan Cheng, Shyan-Shiou Chen, Rui-Hua Chen. Delay-induced spiking dynamics in integrate-and-fire neurons. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1867-1887. doi: 10.3934/dcdsb.2020363


Benoît Perthame, Delphine Salort. On a voltage-conductance kinetic system for integrate & fire neural networks. Kinetic & Related Models, 2013, 6 (4) : 841-864. doi: 10.3934/krm.2013.6.841


Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora. A leaky integrate-and-fire model with adaptation for the generation of a spike train. Mathematical Biosciences & Engineering, 2016, 13 (3) : 483-493. doi: 10.3934/mbe.2016002


Roberta Sirovich, Luisa Testa. A new firing paradigm for integrate and fire stochastic neuronal models. Mathematical Biosciences & Engineering, 2016, 13 (3) : 597-611. doi: 10.3934/mbe.2016010


Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete & Continuous Dynamical Systems, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39


Michel Laurent, Arnaldo Nogueira. Rotation number of contracted rotations. Journal of Modern Dynamics, 2018, 12: 175-191. doi: 10.3934/jmd.2018007


Felipe García-Ramos, Brian Marcus. Mean sensitive, mean equicontinuous and almost periodic functions for dynamical systems. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 729-746. doi: 10.3934/dcds.2019030


Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021089


Timothy J. Lewis. Phase-locking in electrically coupled non-leaky integrate-and-fire neurons. Conference Publications, 2003, 2003 (Special) : 554-562. doi: 10.3934/proc.2003.2003.554


Pierre Guiraud, Etienne Tanré. Stability of synchronization under stochastic perturbations in leaky integrate and fire neural networks of finite size. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5183-5201. doi: 10.3934/dcdsb.2019056


Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora. A simple algorithm to generate firing times for leaky integrate-and-fire neuronal model. Mathematical Biosciences & Engineering, 2014, 11 (1) : 1-10. doi: 10.3934/mbe.2014.11.1


Claude Carlet, Juan Carlos Ku-Cauich, Horacio Tapia-Recillas. Bent functions on a Galois ring and systematic authentication codes. Advances in Mathematics of Communications, 2012, 6 (2) : 249-258. doi: 10.3934/amc.2012.6.249


Feng Qi, Bai-Ni Guo. Completely monotonic functions involving divided differences of the di- and tri-gamma functions and some applications. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1975-1989. doi: 10.3934/cpaa.2009.8.1975


Yan Zhang. Asymptotic behavior of a nonlocal KPP equation with an almost periodic nonlinearity. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 5183-5199. doi: 10.3934/dcds.2016025


Junchao Zhou, Nian Li, Xiangyong Zeng, Yunge Xu. A generic construction of rotation symmetric bent functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020092


Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505


Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263


Wenxian Shen. Global attractor and rotation number of a class of nonlinear noisy oscillators. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 597-611. doi: 10.3934/dcds.2007.18.597

 Impact Factor: 


  • PDF downloads (36)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]