2011, 2011(Special): 1091-1100. doi: 10.3934/proc.2011.2011.1091

Constructing approximate solutions for three dimensional stationary Stokes flow

1. 

Berufsakademie Nordhessen, University of Cooperative Education, Eichlerstr. 25, 34537 Bad Wildungen, Germany

2. 

Fachbereich Mathematik, Universität Kassel, Heinrich Plett Str. 40 (AVZ), D-34132 Kassel

Received  July 2010 Revised  February 2011 Published  October 2011

In this article we develop a method for the numerical solution of a boundary value problem for the system of Stokes equations in three dimensions. Simultaneously we develop the method for linear splines and for quasi interpolants. For this we start with a representation of the uniquely determined velocity field $v$ by the double layer potential. In a fi rst step we approximate the kernel an the source density of the double layer potential. In a second step we use a collocation method for the determination of the unknown values of the source density in the collocation points. The convergence analysis is carried out and error estimates are given.
Citation: Frank Müller, Werner Varnhorn. Constructing approximate solutions for three dimensional stationary Stokes flow. Conference Publications, 2011, 2011 (Special) : 1091-1100. doi: 10.3934/proc.2011.2011.1091
[1]

César Nieto, Mauricio Giraldo, Henry Power. Boundary integral equation approach for stokes slip flow in rotating mixers. Discrete and Continuous Dynamical Systems - B, 2011, 15 (4) : 1019-1044. doi: 10.3934/dcdsb.2011.15.1019

[2]

André Nachbin, Roberto Ribeiro-Junior. A boundary integral formulation for particle trajectories in Stokes waves. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3135-3153. doi: 10.3934/dcds.2014.34.3135

[3]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[4]

Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009

[5]

Carlos Fresneda-Portillo. A new family of boundary-domain integral equations for the diffusion equation with variable coefficient in unbounded domains. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5097-5114. doi: 10.3934/cpaa.2020228

[6]

Lucio Boccardo, Daniela Giachetti. A nonlinear interpolation result with application to the summability of minima of some integral functionals. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 31-42. doi: 10.3934/dcdsb.2009.11.31

[7]

Antonella Falini, Francesca Mazzia, Cristiano Tamborrino. Spline based Hermite quasi-interpolation for univariate time series. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022039

[8]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[9]

Avner Friedman. Free boundary problems for systems of Stokes equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1455-1468. doi: 10.3934/dcdsb.2016006

[10]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[11]

Abdelkader Boucherif. Positive Solutions of second order differential equations with integral boundary conditions. Conference Publications, 2007, 2007 (Special) : 155-159. doi: 10.3934/proc.2007.2007.155

[12]

Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1379-1395. doi: 10.3934/dcdsb.2021094

[13]

Tsukasa Iwabuchi. On analyticity up to the boundary for critical quasi-geostrophic equation in the half space. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1209-1224. doi: 10.3934/cpaa.2022016

[14]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems and Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[15]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[16]

Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343

[17]

Hongjie Dong, Kunrui Wang. Interior and boundary regularity for the Navier-Stokes equations in the critical Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5289-5323. doi: 10.3934/dcds.2020228

[18]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[19]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[20]

Laurence Cherfils, Madalina Petcu. On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1419-1449. doi: 10.3934/cpaa.2016.15.1419

 Impact Factor: 

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]