
Previous Article
On the global stability of an SIRS epidemic model with distributed delays
 PROC Home
 This Issue

Next Article
Optimal control problems for quasivariational inequalities and its numerical approximation
Oscillating solutions to a parabolicelliptic system related to a chemotaxis model
1.  Department of Mathematics, Faculty of Sciences, Ehime University, Matsuyama, 7908577, Japan 
2.  Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu, 8048550, Japan 
[1] 
Alina Chertock, Alexander Kurganov, Mária LukáčováMedvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195216. doi: 10.3934/krm.2019009 
[2] 
Piotr Biler, Tomasz Cieślak, Grzegorz Karch, Jacek Zienkiewicz. Local criteria for blowup in twodimensional chemotaxis models. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 18411856. doi: 10.3934/dcds.2017077 
[3] 
Jiaxi Huang, Youde Wang, Lifeng Zhao. Equivariant Schrödinger map flow on two dimensional hyperbolic space. Discrete & Continuous Dynamical Systems, 2020, 40 (7) : 43794425. doi: 10.3934/dcds.2020184 
[4] 
T. Tachim Medjo. The exponential behavior of the stochastic primitive equations in two dimensional space with multiplicative noise. Discrete & Continuous Dynamical Systems  B, 2010, 14 (1) : 177197. doi: 10.3934/dcdsb.2010.14.177 
[5] 
Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the twodimensional chemotaxisNavierStokes equations with partial diffusion. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 34133441. doi: 10.3934/dcds.2019141 
[6] 
Qingshan Zhang, Yuxiang Li. Convergence rates of solutions for a twodimensional chemotaxisNavierStokes system. Discrete & Continuous Dynamical Systems  B, 2015, 20 (8) : 27512759. doi: 10.3934/dcdsb.2015.20.2751 
[7] 
Yulan Wang. Global solvability in a twodimensional selfconsistent chemotaxisNavierStokes system. Discrete & Continuous Dynamical Systems  S, 2020, 13 (2) : 329349. doi: 10.3934/dcdss.2020019 
[8] 
Ying Yang. Global classical solutions to twodimensional chemotaxisshallow water system. Discrete & Continuous Dynamical Systems  B, 2021, 26 (5) : 26252643. doi: 10.3934/dcdsb.2020198 
[9] 
Toshiyuki Suzuki. Nonlinear Schrödinger equations with inversesquare potentials in two dimensional space. Conference Publications, 2015, 2015 (special) : 10191024. doi: 10.3934/proc.2015.1019 
[10] 
Hong Lu, Ji Li, Mingji Zhang. Spectral methods for twodimensional space and time fractional BlochTorrey equations. Discrete & Continuous Dynamical Systems  B, 2020, 25 (9) : 33573371. doi: 10.3934/dcdsb.2020065 
[11] 
Yūki Naito, Takasi Senba. Bounded and unbounded oscillating solutions to a parabolicelliptic system in two dimensional space. Communications on Pure & Applied Analysis, 2013, 12 (5) : 18611880. doi: 10.3934/cpaa.2013.12.1861 
[12] 
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. Highorder numerical method for twodimensional Riesz space fractional advectiondispersion equation. Discrete & Continuous Dynamical Systems  B, 2021, 26 (10) : 54955508. doi: 10.3934/dcdsb.2020355 
[13] 
Frederic Heihoff. Global masspreserving solutions for a twodimensional chemotaxis system with rotational flux components coupled with a full Navier–Stokes equation. Discrete & Continuous Dynamical Systems  B, 2020, 25 (12) : 47034719. doi: 10.3934/dcdsb.2020120 
[14] 
DongHo Tsai, ChiaHsing Nien. On the oscillation behavior of solutions to the onedimensional heat equation. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 40734089. doi: 10.3934/dcds.2019164 
[15] 
ShinIchiro Ei, Hirofumi Izuhara, Masayasu Mimura. Infinite dimensional relaxation oscillation in aggregationgrowth systems. Discrete & Continuous Dynamical Systems  B, 2012, 17 (6) : 18591887. doi: 10.3934/dcdsb.2012.17.1859 
[16] 
Shen Bian, Li Chen, Evangelos A. Latos. Chemotaxis model with nonlocal nonlinear reaction in the whole space. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 50675083. doi: 10.3934/dcds.2018222 
[17] 
Alexander Kurganov, Mária LukáčováMedvidová. Numerical study of twospecies chemotaxis models. Discrete & Continuous Dynamical Systems  B, 2014, 19 (1) : 131152. doi: 10.3934/dcdsb.2014.19.131 
[18] 
Xu Pan, Liangchen Wang. On a quasilinear fully parabolic twospecies chemotaxis system with two chemicals. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021047 
[19] 
Xie Li, Yilong Wang. Boundedness in a twospecies chemotaxis parabolic system with two chemicals. Discrete & Continuous Dynamical Systems  B, 2017, 22 (7) : 27172729. doi: 10.3934/dcdsb.2017132 
[20] 
Liangchen Wang, Jing Zhang, Chunlai Mu, Xuegang Hu. Boundedness and stabilization in a twospecies chemotaxis system with two chemicals. Discrete & Continuous Dynamical Systems  B, 2020, 25 (1) : 191221. doi: 10.3934/dcdsb.2019178 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]