\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Two-parameter locus of boundary crisis: Mind the gaps!

Abstract Related Papers Cited by
  • Boundary crisis is a mechanism for destroying a chaotic attractor when one parameter is varied. In a two-parameter setting the locus of boundary crisis is associated with curves of homo- or heteroclinic tangency bifurcations of saddle periodic orbits. It is known that the locus of boundary crisis contains many gaps, corresponding to channels (regions of positive measure) where a non-chaotic attractor persists. One side of such a subduction channel is a saddle-node bifurcation of a periodic orbit that marks the start of a periodic window in the chaotic regime; the other side of the channel is formed by a homo- or heteroclinic tangency bifurcation associated with the saddle periodic orbit involved in the saddle-node bifurcation. We present a two-parameter study of boundary crisis in the Ikeda map, which models the dynamics of energy levels in a laser ring cavity. We confirm the existence of many gaps on the boundary- crisis locus. However, the gaps correspond to subduction channels that can have a rather different structure compared to what is known in the literature.
    Mathematics Subject Classification: Primary: 37G25, 37M20; Secondary: 65P30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(46) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return