
Previous Article
A proximallike algorithm for vibroimpact problems with a nonsmooth set of constraints
 PROC Home
 This Issue

Next Article
Second order oscillation of mixed nonlinear dynamic equations with several positive and negative coefficients
Existence and estimate of the location of the freeboundary for a non local inverse ellipticparabolic problem arising in nuclear fusion
1.  Dpto. Matemática Aplicada, Fac. de Matemáticas, U. Politécnica de Madrid, 28040 Madrid, Spain 
[1] 
Noriaki Yamazaki. Doubly nonlinear evolution equations associated with ellipticparabolic free boundary problems. Conference Publications, 2005, 2005 (Special) : 920929. doi: 10.3934/proc.2005.2005.920 
[2] 
Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolicelliptic type chemotaxis model. Communications on Pure & Applied Analysis, 2018, 17 (6) : 25772592. doi: 10.3934/cpaa.2018122 
[3] 
Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 1017. doi: 10.3934/proc.2007.2007.10 
[4] 
Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic type chemotaxis model. Kinetic & Related Models, 2015, 8 (4) : 667684. doi: 10.3934/krm.2015.8.667 
[5] 
Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 14311443. doi: 10.3934/cpaa.2013.12.1431 
[6] 
Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems  B, 2016, 21 (5) : 14211434. doi: 10.3934/dcdsb.2016003 
[7] 
Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa. A one dimensional free boundary problem for adsorption phenomena. Networks & Heterogeneous Media, 2014, 9 (4) : 655668. doi: 10.3934/nhm.2014.9.655 
[8] 
Yongzhi Xu. A free boundary problem model of ductal carcinoma in situ. Discrete & Continuous Dynamical Systems  B, 2004, 4 (1) : 337348. doi: 10.3934/dcdsb.2004.4.337 
[9] 
Anna Lisa Amadori. Contour enhancement via a singular free boundary problem. Conference Publications, 2007, 2007 (Special) : 4453. doi: 10.3934/proc.2007.2007.44 
[10] 
Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete & Continuous Dynamical Systems  B, 2011, 15 (1) : 293308. doi: 10.3934/dcdsb.2011.15.293 
[11] 
Hiroshi Matsuzawa. A free boundary problem for the FisherKPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 18211852. doi: 10.3934/cpaa.2018087 
[12] 
Micah Webster, Patrick Guidotti. Boundary dynamics of a twodimensional diffusive free boundary problem. Discrete & Continuous Dynamical Systems  A, 2010, 26 (2) : 713736. doi: 10.3934/dcds.2010.26.713 
[13] 
Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems  A, 2010, 26 (2) : 737765. doi: 10.3934/dcds.2010.26.737 
[14] 
Aram L. Karakhanyan. Lipschitz continuity of free boundary in the continuous casting problem with divergence form elliptic equation. Discrete & Continuous Dynamical Systems  A, 2016, 36 (1) : 261277. doi: 10.3934/dcds.2016.36.261 
[15] 
Xavier FernándezReal, Xavier RosOton. On global solutions to semilinear elliptic equations related to the onephase free boundary problem. Discrete & Continuous Dynamical Systems  A, 2019, 39 (12) : 69456959. doi: 10.3934/dcds.2019238 
[16] 
Chonghu Guan, Fahuai Yi, Xiaoshan Chen. A fully nonlinear free boundary problem arising from optimal dividend and risk control model. Mathematical Control & Related Fields, 2019, 9 (3) : 425452. doi: 10.3934/mcrf.2019020 
[17] 
Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121131. doi: 10.3934/ipi.2008.2.121 
[18] 
Harunori Monobe, Hirokazu Ninomiya. Multiple existence of traveling waves of a free boundary problem describing cell motility. Discrete & Continuous Dynamical Systems  B, 2014, 19 (3) : 789799. doi: 10.3934/dcdsb.2014.19.789 
[19] 
Shihe Xu, Yinhui Chen, Meng Bai. Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients. Discrete & Continuous Dynamical Systems  B, 2016, 21 (3) : 9971008. doi: 10.3934/dcdsb.2016.21.997 
[20] 
Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete & Continuous Dynamical Systems  B, 2017, 22 (3) : 895911. doi: 10.3934/dcdsb.2017045 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]