2011, 2011(Special): 1224-1233. doi: 10.3934/proc.2011.2011.1224

Dynamics of dendrite growth in a binary alloy with magnetic field effect

1. 

INSA-IRMAR, 20 avenue des Buttes de Coësmes, CS 70839, 35708 Rennes Cédex, France, France

2. 

UR1-IRMAR, Campus de Beaulieu, 35042 Rennes Cédex, France

Received  August 2010 Revised  April 2011 Published  October 2011

In order to analyze the dynamical changes in the free dendritic growth due to magnetic- field, we have developed a 2D phase- field model which consists of nonlinear evolutive and coupled systems of flow, concentration and phase field in an isothermal environment. We present the realistic numerical simulations of the influence of various magnetic- fields and other critical parameters of the derived model on the evolution of dendrites during the solidifi cation of the binary mixture of Nickel-Copper (Ni-Cu).
Citation: Amer Rasheed, Aziz Belmiloudi, Fabrice Mahé. Dynamics of dendrite growth in a binary alloy with magnetic field effect. Conference Publications, 2011, 2011 (Special) : 1224-1233. doi: 10.3934/proc.2011.2011.1224
[1]

Maciek Korzec, Andreas Münch, Endre Süli, Barbara Wagner. Anisotropy in wavelet-based phase field models. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1167-1187. doi: 10.3934/dcdsb.2016.21.1167

[2]

José Luiz Boldrini, Gabriela Planas. A tridimensional phase-field model with convection for phase change of an alloy. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 429-450. doi: 10.3934/dcds.2005.13.429

[3]

Chun-Hao Teng, I-Liang Chern, Ming-Chih Lai. Simulating binary fluid-surfactant dynamics by a phase field model. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1289-1307. doi: 10.3934/dcdsb.2012.17.1289

[4]

Isabel Mercader, Oriol Batiste, Arantxa Alonso, Edgar Knobloch. Dissipative solitons in binary fluid convection. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1213-1225. doi: 10.3934/dcdss.2011.4.1213

[5]

Denis Danilov, Britta Nestler. Phase-field modelling of nonequilibrium partitioning during rapid solidification in a non-dilute binary alloy. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1035-1047. doi: 10.3934/dcds.2006.15.1035

[6]

Honghu Liu. Phase transitions of a phase field model. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883

[7]

Francisco J. Ibarrola, Ruben D. Spies. A two-step mixed inpainting method with curvature-based anisotropy and spatial adaptivity. Inverse Problems and Imaging, 2017, 11 (2) : 247-262. doi: 10.3934/ipi.2017012

[8]

Pavel Krejčí, Elisabetta Rocca, Jürgen Sprekels. Phase separation in a gravity field. Discrete and Continuous Dynamical Systems - S, 2011, 4 (2) : 391-407. doi: 10.3934/dcdss.2011.4.391

[9]

Tina Hartley, Thomas Wanner. A semi-implicit spectral method for stochastic nonlocal phase-field models. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 399-429. doi: 10.3934/dcds.2009.25.399

[10]

Jie Wang, Xiaoqiang Wang. New asymptotic analysis method for phase field models in moving boundary problem with surface tension. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3185-3213. doi: 10.3934/dcdsb.2015.20.3185

[11]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[12]

Yi Shi, Kai Bao, Xiao-Ping Wang. 3D adaptive finite element method for a phase field model for the moving contact line problems. Inverse Problems and Imaging, 2013, 7 (3) : 947-959. doi: 10.3934/ipi.2013.7.947

[13]

I-Liang Chern, Chun-Hsiung Hsia. Dynamic phase transition for binary systems in cylindrical geometry. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 173-188. doi: 10.3934/dcdsb.2011.16.173

[14]

Roberto Alicandro, Andrea Braides, Marco Cicalese. Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint. Networks and Heterogeneous Media, 2006, 1 (1) : 85-107. doi: 10.3934/nhm.2006.1.85

[15]

Hanming Zhou. Lens rigidity with partial data in the presence of a magnetic field. Inverse Problems and Imaging, 2018, 12 (6) : 1365-1387. doi: 10.3934/ipi.2018057

[16]

Gilles Carbou, Stéphane Labbé, Emmanuel Trélat. Smooth control of nanowires by means of a magnetic field. Communications on Pure and Applied Analysis, 2009, 8 (3) : 871-879. doi: 10.3934/cpaa.2009.8.871

[17]

Nurlan Dairbekov, Gunther Uhlmann. Reconstructing the metric and magnetic field from the scattering relation. Inverse Problems and Imaging, 2010, 4 (3) : 397-409. doi: 10.3934/ipi.2010.4.397

[18]

Xinfu Chen, G. Caginalp, Christof Eck. A rapidly converging phase field model. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1017-1034. doi: 10.3934/dcds.2006.15.1017

[19]

Raffaele Esposito, Yan Guo, Rossana Marra. Stability of a Vlasov-Boltzmann binary mixture at the phase transition on an interval. Kinetic and Related Models, 2013, 6 (4) : 761-787. doi: 10.3934/krm.2013.6.761

[20]

Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741

 Impact Factor: 

Metrics

  • PDF downloads (140)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]