2011, 2011(Special): 1263-1270. doi: 10.3934/proc.2011.2011.1263

Dispersive type estimates for fourier integrals and applications to hyperbolic systems

1. 

Department of Mathematics, Imperial College London, 180 Queen's Gate, London, SW7 2AZ, United Kingdom, United Kingdom

Received  June 2010 Revised  January 2011 Published  October 2011

In this note we announce dispersive estimates for Fourier integrals with parameter-dependent phase functions in terms of geometric quantities of associated families of Fresnel surfaces. The results are based on a multidimensional van der Corput lemma due to the rst author.
    Applications to dispersive estimates for hyperbolic systems and scalar higher order hyperbolic equations are also discussed.
Citation: Michael Ruzhansky, Jens Wirth. Dispersive type estimates for fourier integrals and applications to hyperbolic systems. Conference Publications, 2011, 2011 (Special) : 1263-1270. doi: 10.3934/proc.2011.2011.1263
[1]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control and Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[2]

Yonggeun Cho, Tohru Ozawa, Suxia Xia. Remarks on some dispersive estimates. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1121-1128. doi: 10.3934/cpaa.2011.10.1121

[3]

Fabio Nicola. Remarks on dispersive estimates and curvature. Communications on Pure and Applied Analysis, 2007, 6 (1) : 203-212. doi: 10.3934/cpaa.2007.6.203

[4]

Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations and Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271

[5]

Maria Alessandra Ragusa, Atsushi Tachikawa. Estimates of the derivatives of minimizers of a special class of variational integrals. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1411-1425. doi: 10.3934/dcds.2011.31.1411

[6]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[7]

Jiecheng Chen, Dashan Fan, Lijing Sun. Asymptotic estimates for unimodular Fourier multipliers on modulation spaces. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 467-485. doi: 10.3934/dcds.2012.32.467

[8]

Mohammed AL Horani, Mauro Fabrizio, Angelo Favini, Hiroki Tanabe. Fractional Cauchy problems and applications. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2259-2270. doi: 10.3934/dcdss.2020187

[9]

M. Burak Erdoǧan, William R. Green. Dispersive estimates for matrix Schrödinger operators in dimension two. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4473-4495. doi: 10.3934/dcds.2013.33.4473

[10]

Jeremy L. Marzuola. Dispersive estimates using scattering theory for matrix Hamiltonian equations. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 995-1035. doi: 10.3934/dcds.2011.30.995

[11]

Belkacem Said-Houari, Salim A. Messaoudi. General decay estimates for a Cauchy viscoelastic wave problem. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1541-1551. doi: 10.3934/cpaa.2014.13.1541

[12]

Todor Gramchev, Nicola Orrú. Cauchy problem for a class of nondiagonalizable hyperbolic systems. Conference Publications, 2011, 2011 (Special) : 533-542. doi: 10.3934/proc.2011.2011.533

[13]

Teemu Lukkari, Mikko Parviainen. Stability of degenerate parabolic Cauchy problems. Communications on Pure and Applied Analysis, 2015, 14 (1) : 201-216. doi: 10.3934/cpaa.2015.14.201

[14]

Jan-Cornelius Molnar. On two-sided estimates for the nonlinear Fourier transform of KdV. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3339-3356. doi: 10.3934/dcds.2016.36.3339

[15]

Barbara Brandolini, Francesco Chiacchio, Jeffrey J. Langford. Estimates for sums of eigenvalues of the free plate via the fourier transform. Communications on Pure and Applied Analysis, 2020, 19 (1) : 113-122. doi: 10.3934/cpaa.2020007

[16]

Nicola Abatangelo, Sven Jarohs, Alberto Saldaña. Positive powers of the Laplacian: From hypersingular integrals to boundary value problems. Communications on Pure and Applied Analysis, 2018, 17 (3) : 899-922. doi: 10.3934/cpaa.2018045

[17]

Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016

[18]

Delin Wu and Chengkui Zhong. Estimates on the dimension of an attractor for a nonclassical hyperbolic equation. Electronic Research Announcements, 2006, 12: 63-70.

[19]

Roberto Guglielmi. Indirect stabilization of hyperbolic systems through resolvent estimates. Evolution Equations and Control Theory, 2017, 6 (1) : 59-75. doi: 10.3934/eect.2017004

[20]

Stefano Bianchini. Interaction estimates and Glimm functional for general hyperbolic systems. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 133-166. doi: 10.3934/dcds.2003.9.133

 Impact Factor: 

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]