2011, 2011(Special): 1385-1394. doi: 10.3934/proc.2011.2011.1385

Polarization dynamics during takeover collisions of solitons in systems of coupled nonlinears Schödinger equations


Department of Differential Equations, Faculty of Applied Mathematics and Informatics, Technical University of Sofia, 1000 Sofia, Bulgaria

Received  July 2010 Revised  April 2011 Published  October 2011

For the system of coupled nonlinear Schrödinger equations we investigate numerically the takeover interaction dynamics of elliptically polarized solitons. In the case of general elliptic polarization, analytical solution for the shapes of a steadily propagating solitons are not available, and we develop a numerical algorithm finding the shape. We use the superposition of generally elliptical polarized solitons as the initial condition for investigating the soliton dynamics. In order to extract the pure effect of the initial phase angle, we consider the case without cross-modulation – the Manakov system. The sum of the masses for the two quasi-particles is constant and the total pseudomementum and energy of the system are conserved. In the case of nontrivial cross-modulation combining it with different initial phase angles causes velocity shifts of interacted solitons. The results of this work outline the role of the initial phase, initial polarization and the interplay between them and nonlinear couplings on the interaction dynamics of solitons in system of coupled nonlinear Schrödinger equations.
Citation: M. D. Todorov. Polarization dynamics during takeover collisions of solitons in systems of coupled nonlinears Schödinger equations. Conference Publications, 2011, 2011 (Special) : 1385-1394. doi: 10.3934/proc.2011.2011.1385

Katherine A. Newhall, Gregor Kovačič, Ildar Gabitov. Polarization dynamics in a resonant optical medium with initial coherence between degenerate states. Discrete & Continuous Dynamical Systems - S, 2020, 13 (8) : 2285-2301. doi: 10.3934/dcdss.2020189


M. D. Todorov, C. I. Christov. Collision dynamics of circularly polarized solitons in nonintegrable coupled nonlinear Schrödinger system. Conference Publications, 2009, 2009 (Special) : 780-789. doi: 10.3934/proc.2009.2009.780


Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381


Sergey V. Bolotin. Shadowing chains of collision orbits. Discrete & Continuous Dynamical Systems, 2006, 14 (2) : 235-260. doi: 10.3934/dcds.2006.14.235


Frank Jochmann. Decay of the polarization field in a Maxwell Bloch system. Discrete & Continuous Dynamical Systems, 2003, 9 (3) : 663-676. doi: 10.3934/dcds.2003.9.663


Alfredo Lorenzi. Identification problems related to cylindrical dielectrics **in presence of polarization**. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2247-2265. doi: 10.3934/dcdsb.2014.19.2247


Matthias Gerdts, René Henrion, Dietmar Hömberg, Chantal Landry. Path planning and collision avoidance for robots. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 437-463. doi: 10.3934/naco.2012.2.437


Claudia Totzeck. An anisotropic interaction model with collision avoidance. Kinetic & Related Models, 2020, 13 (6) : 1219-1242. doi: 10.3934/krm.2020044


Tatsuki Mori, Kousuke Kuto, Tohru Tsujikawa, Shoji Yotsutani. Exact multiplicity of stationary limiting problems of a cell polarization model. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5627-5655. doi: 10.3934/dcds.2016047


Gang Bao, Jun Lai. Radar cross section reduction of a cavity in the ground plane: TE polarization. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 419-434. doi: 10.3934/dcdss.2015.8.419


Tian Xiang. Dynamics in a parabolic-elliptic chemotaxis system with growth source and nonlinear secretion. Communications on Pure & Applied Analysis, 2019, 18 (1) : 255-284. doi: 10.3934/cpaa.2019014


King-Yeung Lam, Wei-Ming Ni. Limiting profiles of semilinear elliptic equations with large advection in population dynamics. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1051-1067. doi: 10.3934/dcds.2010.28.1051


Samuel R. Kaplan, Ernesto A. Lacomba, Jaume Llibre. Symbolic dynamics of the elliptic rectilinear restricted 3--body problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 541-555. doi: 10.3934/dcdss.2008.1.541


Adriano Festa, Andrea Tosin, Marie-Therese Wolfram. Kinetic description of collision avoidance in pedestrian crowds by sidestepping. Kinetic & Related Models, 2018, 11 (3) : 491-520. doi: 10.3934/krm.2018022


Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218


Felipe Cucker, Jiu-Gang Dong. A conditional, collision-avoiding, model for swarming. Discrete & Continuous Dynamical Systems, 2014, 34 (3) : 1009-1020. doi: 10.3934/dcds.2014.34.1009


Tatsuki Mori, Kousuke Kuto, Masaharu Nagayama, Tohru Tsujikawa, Shoji Yotsutani. Global bifurcation sheet and diagrams of wave-pinning in a reaction-diffusion model for cell polarization. Conference Publications, 2015, 2015 (special) : 861-877. doi: 10.3934/proc.2015.0861


Zhenzhen Zheng, Ching-Shan Chou, Tau-Mu Yi, Qing Nie. Mathematical analysis of steady-state solutions in compartment and continuum models of cell polarization. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1135-1168. doi: 10.3934/mbe.2011.8.1135


Luis A. Caffarelli, Alexis F. Vasseur. The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 409-427. doi: 10.3934/dcdss.2010.3.409


Laetitia Paoli. Vibrations of a beam between stops: Collision events and energy balance properties. Evolution Equations & Control Theory, 2020, 9 (4) : 1133-1151. doi: 10.3934/eect.2020057

 Impact Factor: 


  • PDF downloads (48)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]